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Abstract
A challenge in image restoration is to recover a clear image from the blurry observation in the
presence of different types of noise. There are few works addressing image deblurring under
mixed noise. To handle this issue, we propose a general model based on classical wavelet
tight frame regularization.We utilize a convexity-preserving term to obtain a component-wise
convex model under a mild condition. Indeed, to reduce the cost of solving subproblems,
the inexact Gauss–Seidel-based majorized semi-proximal alternating direction method of
multipliers (sGS-imsPADMM) with relative error control is developed. Besides, the global
convergence of sGS-imsPADMM is demonstrated. Numerical results for the image restora-
tion problems show that the proposed model and solving approach are superior to some
state-of-the-art methods both in numerical analysis and visual quality.
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1 Introduction

In the field of image processing, recovering clear images from blurred and noisy observations
is a fundamental task. Image degradation occurs when acquisition equipment or lighting
affects the image. Therefore, images obtained from devices or machines can be corrupted by
various types of ‘pollution’, such as noise and blur. Hence, image denoising and deblurring
have received significant attention in applied mathematics over the years. Noise is a useless
signal, and two types of noise have been widely studied: additive noise [23, 26, 28] and
multiplication noise [24, 25, 27].

Additive noise is a random process independent of the signal. If vector b is the additive
Gaussian noise with standard variance σ and mean 0, the degraded image f is formulated as

f = Hw + b, (1)

where w represents the original image, and H is a linear operator. Many methods have been
developed to recoverw from f , such as variational-basedmethods [12, 20], nonlocalmethods
[13, 26], wavelet-basedmethods [23, 28], and so on.Among thesemethods, the regularization
methods based on total variation (TV) and the wavelet frame were widely used to handle the
additive noise with deblurring simultaneously. For instance, the Rudin-Osher-Fatemi (ROF)
model [31] based on TV has been widely used. Differing from the TV-based regularization,
wavelet frame based approaches have also been widely used due to their multi-resolution
structure, sparse representations, and high redundancy [23].

On the other hand, multiplicative noise is proportional to the signal, and the noise model
with blur can be formulated as

f = Hwη, (2)

where η denotes multiplicative noise, which follows standard distributions such as Gamma
distributions. The probability density function of multiplicative Gamma noise [2] is defined
as

p(η; K ) = K K

(K )
ηK−1e−Kη1{η≥0}, (3)

where 1{η≥0} represents the indicator function of the subset {η|η ≥ 0}, Γ (·) is the classical
Gamma function, η follows a gamma law with mean 1, and the variance of η is 1/K . The
integer K determines the level of the Gamma noise.

Methods employed in literature formultiplicative noise and blur removal include diffusion
equation methods [32, 38], nonlocal low-rank based methods [15, 24], and variational-based
methods [4, 40]. In thesemethods, Rudin, Lions andOsher [30] introduced TV regularization
to multiplicative noise and proposed the first variational model, known as the RLO model.
However, the RLOmodel cannot produce effective results in restoring Gamma noise. Aubert
and Aujol [2] introduced a second variational model, referred to as the AA model, which
employed Bayesian Maximum A Posteriori (MAP) probability estimation. The authors in
[2] expanded the denoising model to handle the deblurring problem, in which the gradient
projection-based algorithm was used in their model. Because of the nonconvexity of the AA
model, the resulting optimization problem is not easy to solve. To overcome this difficulty,
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Dong and Zeng [11] proposed two models for image restoration. The first model, denoted as
theDZmodel, is a generalizedmodel thatmodifies the data fidelity term by adding a quadratic
penalty term. This modification guarantees the convexity of the objective function under mild
conditions. The second model is a strictly convex model that guarantees the uniqueness of
the solution. Dong and Zeng achieved this by using the I-divergence technique. To solve the
convex models, they used the split Bregman algorithm. Through the use of the logarithm to
transform the multiplicative noise and blur removal problem into the additive noise and blur
removal problem, Shi and Osher [33] proposed an SO model with a quadratic term, which
is globally convex. The experimental results demonstrate that these TV regularization-based
models have good performance in image restoration, such as effectively preserving edges
and details in images, whereas stair-casing artifacts would be inevitable with TV.

The wavelet frames-based regularization method is a typical sparsity-based method for
image restoration. There are three different types of wavelet models, i.e., analysis-based
models [1, 5], synthesis-based models [6, 10], and balance models [3, 7]. In the analysis-
based approach, assuming that the wavelet tight frame coefficientW of the natural imagew is
sparse, the size ofWw can adaptively represent the regularity of the underlying image. Due to
the redundancy and multi-resolution structure of the wavelet tight frame, the wavelet-based
approach can significantly improve the quality of the recovered image.

In reality, however, the type of noise may be neither additive nor multiplicative. Instead, it
might be a mixture of the same type [16, 36] or a mixture of these two types [18, 35]. How-
ever, the previously mentioned methods can not deal with this problem directly. Recently,
many methods have been proposed to solve mixed noise. Thanh et al. [34] proposed a model
based on TV to deal with a mixture of Poisson-Gaussian noise. Wang et al. [36] proposed
an adaptive algorithm based on CNN deep learning, namely EM-CNN. It combined tradi-
tional variational methods and deep learning-based algorithms to remove Gaussian-Gaussian
noise or Gaussian-impulse noise. Some works also have been proposed for removing mixed
Gaussian-Gamma noise. Ullah et al. [35] proposed a new model using a linear combination
of the fractional total variation, image priors, and the data fidelity term in [31]. They used
an empirical selection of the parameters to balance the above three items. Huang et al. [14]
focused on variational approaches to obtain restorations. Since the model was non-convex, a
convex relaxation model was proposed. Although those methods present competitive perfor-
mance in handling mixture noise removal task, they perform mediocrely in deblurring tasks,
such as the boundaries are still blurred.

In this paper, the restoration of blurred images corrupted by a mixture of additive Gaus-
sian noise and multiplicative Gamma noise is studied. The mathematical expression of the
degraded image f is formulated as follows:

f = (Hw + b)η. (4)

To address this issue, we propose a novel model that uses regularizer based on wavelet
tight frame. Specifically, our model incorporates a convexity-preserving term, which ensures
that the objective function is convex under mild conditions. By using wavelet tight frame
as a regularization term, our model is able to preserve image details while removing noise
and blurring. Then, we develop an inexact symmetric Gauss–Seidel-based majorized semi-
proximal alternating direction method of multipliers (sGS-imsPADMM) with relative error
control for solving the proposed model. The experiments demonstrate that the proposed
method iswell suited tomixed noise and blur removal simultaneously. Themain contributions
of this work are three-fold:
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• We propose a novel convex model to deal with degraded images corrupted by mixed
Gaussian-Gamma noise and blur. We utilize the convexity preserving term and wavelet
tight frame regularization into the non-convex model to obtain a solvable convex model.

• We develop an inexact sGS-imsPADMM with relative error control for solving the
proposedmodel because it can reduce the cost of solving subproblems and achieve appro-
priate accuracy. Although sGS-imsPADMM has not been widely considered in imaging
science, it is a nice example explaining the excellent performance of the algorithm that
can be applied to image processing problems.

• The extensive experiments demonstrated that the proposed model surpasses state-of-the-
art models in removing mixed Gaussian-Gamma noise as well as blur. Moreover, the
proposed inexact sGS-imsPADMM approach with relative error control can achieve a
better solution in terms of restoration quality while also being faster than other methods
like ADMM.

The rest of the paper is organized as follows. In Sect. 2, the related models for restoring
blurred imageswithmixednoise are briefly reviewed, andwepropose a novelmodel formixed
noise and blur removal. Section3 presents an iterative algorithm for solving corresponding
convex optimization problems and gives the convergence analysis. In Sect. 4, some numerical
experiments are conducted to demonstrate the efficiency and superiority of the proposed
model and solving method. Section5 concludes this paper.

2 A Novel Model for Denoising and Deblurring

In this section, we give a review of some related models in image restoration. Then, we
propose a novel model by using a regularizer based on wavelet tight frame and a convexity-
preserving term, to restore blurred images with Gaussian-Gamma noise.

As mentioned before, Huang et al. [14] introduced an intermediate image u = Hw +b to
derive a variational model from (4), in which u can be regarded as a convolution image with
additive Gaussian noise b. In this approach, it is assumed that b is small. Moreover, it can
be further assumed that inf f > 0, then suppose that 0 < σ ≤ 2inf f . The variational model
[14] can be described as follows:

min
u>0,w

〈
log u + f

u
, 1

〉
+ ‖Hw − u‖22

2σ 2 + μA(w), (5)

whereμ is a positive parameter. The last term A(w) is a convex regularization term to prevent
the model from over-fitting. Due to the non-convexity of the term log u, the above model
is non-convex and difficult to handle. To this end, they proposed to approximate the above
model by a convex relaxation model.

Inspired by the convex relaxation model, we introduce a quadratic convex term to ensure
that the model is component-wise convex on u. From this, a convex model for denoising and
deblurring is proposed:

min
u>0,w

〈
log u + f

u
, 1

〉
+ α

∥∥∥√
u − √

f
∥∥∥2
2
+ ‖Hw − u‖22

2σ 2 + μA(w), (6)

where α is a positive parameter. The preservation of convexity in the model not only guaran-
tees its convexity but also enhances the overall effectiveness of image restoration to a certain
degree. Further details on this matter will be discussed in the experimental section.
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An important property of the image recovery process is the sparse representation of the
image. The use of wavelet tight frame to represent an image is beneficial in ensuring the
existence of sparsity. To demonstrate the advantages of the model’s flexibility, we consider
a model with wavelet tight frame regularization that can improve the performance of both
deblurring and denoising of mixed noise, especially for Gaussian-Gamma noise. Generally,
we propose the following model:

min
u>0,w

〈
log u + f

u
, 1

〉
+ α

∥∥∥√
u − √

f
∥∥∥2
2
+ ‖Hw − u‖22

2σ 2 + μ‖Ww‖1, (7)

where W is the framelet transform satisfying WTW = I with the identity matrix I .
We demonstrate the convexity of the proposed model (7) under certain mild conditions in

the following, as discussed in [11].

Proposition 1 If α ≥ (3−inf f )
√
6

9 sup
√

f
, the model (7) is component-wise convex on u.

Proof Let E(u) = 〈log u+ f
u , 1〉+α‖√u−√

f ‖22. With t ∈ R
+ and parameter α, we define

a function g as

g(t) := log t + f

t
+ α(

√
t − √

f )2.

We can get the second-order derivative differentiation of g as

g′′(t) = −t−2 + 2 f t−3 + α
√

f

2
t−

3
2 .

Thus, when α ≥ (3−inf f )
√
6

9 sup
√

f
, we have g′′(t) ≥ 0, i.e., g is convex. Furthermore, since

function g has only one minimizer, g is strictly convex when α = (3−inf f )
√
6

9 sup
√

f
. Therefore,

the function 〈log u + f
u , 1〉 + α‖√u − √

f ‖22 + ‖Hw−u‖22
2σ 2 is strictly convex. Based on the

convexity of the wavelet tight frame regularization, we conclude that the model (7) is convex.

�

3 Algorithm and Convergence Analysis

This section proposes an iterative algorithm to solve the proposed model (7). The objective
function in (7) is convex, and there are various optimization algorithms that can be applied
to this problem, such as classical ADMM. Although the objective function of the proposed
model can be split into two-block convex functions, solving the ADMM subproblems with
high accuracy can be computationally expensive. To reduce the computational burden, one
strategy is to divide the variables in (7) into three or more blocks based on their composite
structures and solve the resulting problems using a multi-block ADMM type that directly
extends the 2-block ADMM to a multi-block setup. However, this method of direct scal-
ing may not converge, which can be a potential issue. Therefore, we propose an inexact
sGS-imsPADMM algorithm to solve (7). This algorithm can reduce the cost of solving sub-
problems while ensuring theoretical convergence.
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3.1 An Inexact sGS-imsPADMMwith Relative Error Control for Solving (7)

By introducing an auxiliary variable x , we first reformulate the minimization problem (7)
into an equivalent one as follows:

min
u,w,x

〈
log u + f

u
, 1

〉
+ α

∥∥∥√
u − √

f
∥∥∥2
2
+ ‖Hw − u‖22

2σ 2 + μ‖x‖1,
s.t. x − Ww = 0.

(8)

Define y1 = u, y2 = w and y = (y1, y2), x ∈ X and y ∈ Y , then problem (8) falls within
the following general convex composite programming:

min
x∈X ,y∈Y μ‖x‖1 + ‖Hy2 − y1‖22

2σ 2 +
〈
log y1 + f

y1
, 1

〉
+ α

∥∥∥√
y1 − √

f
∥∥∥2
2
,

s.t. x − Wy2 = 0.

(9)

Let us define g(y) = g(y1, y2) := ‖Hy2−y1‖22
2σ 2 . Then it is a continuously differentiable and

convex function, and its gradient is Lipschitz continuous. Therefore, there exists a positive
semidefinite matrix Σg such that for any y, y′ ∈ Y ,

g(y) ≤ ĝ(y; y′) := g(y′) + 〈∇g(y′), y − y′〉 + 1

2

∥∥y − y′∥∥2
Σg

. (10)

Define p(x) := μ‖x‖1 and q(y) :=
〈
log y1 + f

y1
, 1

〉
+α

∥∥√
y1 − √

f
∥∥2
2, and it follows from

Proposition 1 that both of them are closed proper convex functions when α ≥ (3−inf f )
√
6

9 sup
√

f
. For

any z := (x, y, l) ∈ X ×Y ×L and (x ′, y′) ∈ X ×Y , the majorized augmented Lagrangian
function associated with (9) is

Lβ(x, y; (x ′, y′, l)) = p(x) + q(y) + ĝ(y; y′) + 〈l, x − Wy2〉 + β

2
‖x − Wy2‖22 , (11)

where β is the penalty parameter and l is the Lagrangian multiplier.
We say that the Slater constraint qualifying (CQ) holds for problem (9), if it satisfies

{(x, y) | x ∈ ri(dom p), y ∈ ri(dom q), x − Wy2 = 0} = ∅, (12)

where ‘dom’ represents the domain of definition, and ‘ri’ represents taking the open set of
the domain of definition. When the Slater CQ is satisfied, according to Corollaries 28.2.2
and 28.3.1 in [29], the solution set of (9) is non-empty.

In the following, we propose an inexact sGS-imsPADMM with relative error control
for solving the proposed model (7). The concrete algorithm framework is summarized in
Algorithm 1.

Next, we explain how to solve these subproblems in Algorithm 1, respectively. For x-
subproblem in Step 1, we have

xk+1 = argmin
x

Lβ(x, yk1 , y
k
2 ; zk) + 1

2

∥∥∥x − xk
∥∥∥2
P

. (13)

The above problem is equivalent to evaluating the proximal operator of the �1-norm function,
which has a closed-form solution as follows:

xk+1 = Tμ/(β+λmax(P))

(
βWyk1 − lk + Pxk

β + λmax(P)

)
, (14)
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Algorithm 1 An inexact sGS-imsPADMM with relative error control for solving (7).

Let ϑ ∈ (0, (1 + √
5)/2) be the step-length and {εk }k≥0 be a nonnegative summable sequence satisfying∑∞

k=0 ε2k < +∞. Let P and Q̃ := Diag(Q̃1, Q̃2) be given matrices which satisfy

P ≥ 0, P + β I T I > 0; 1

2
Σg + Q̃ ≥ 0,

1

2
Σg + Q̃ + βWTW > 0.

For k = 0, 1, 2, . . . , perform the following steps:
Step 1. Compute

xk+1 = argmin
x

Lβ

(
x, yk ; zk

)
+ 1

2

∥∥∥x − xk
∥∥∥2
P

.

Step 2a. (Backward GS sweep) Compute

ỹk+1
2 ≈ argmin

y2
Lβ

(
xk+1, yk1 , y2; zk

)
+ 1

2

∥∥∥y2 − yk2

∥∥∥2
Q̃2

,

γ̃ k+1
2 ∈ ∂y2 Lβ

(
xk+1, yk1 , ỹk+1

2 ; zk
)

+ Q̃2

(
ỹk+1
2 − yk2

)
with

∥∥∥γ̃ k+1
2

∥∥∥ ≤ εk

∥∥∥yk2 − yk−1
2

∥∥∥ .

Step 2b. (Forward GS sweep) Compute

yk+1
1 ≈ argmin

y1
Lβ

(
xk+1, y1, ỹ

k+1
2 ; zk

)
+ 1

2

∥∥∥y1 − yk1

∥∥∥2
Q̃1

,

γ k+1
1 ∈ ∂y1 Lβ

(
xk+1, yk+1

1 , ỹk+1
2 ; zk

)
+ Q̃1

(
yk+1
1 − yk1

)
with

∥∥∥γ k+1
1

∥∥∥ ≤ εk

∥∥∥yk+1
1 − yk1

∥∥∥ .

yk+1
2 ≈ argmin

y2
Lβ

(
xk+1, yk+1

1 , y2; zk
)

+ 1

2

∥∥∥y2 − yk2

∥∥∥2
Q̃2

,

γ k+1
2 ∈ ∂y2 Lβ

(
xk+1, yk+1

1 , yk+1
2 ; zk

)
+ Q̃2

(
yk+1
2 − yk2

)
with

∥∥∥γ k+1
2

∥∥∥ ≤ εk

∥∥∥yk+1
2 − yk2

∥∥∥ .

Step 3. Compute

lk+1 = lk + ϑβ
(
xk+1 − Wyk+1

2

)
.

For any k ≥ 0, set yk+1 := (yk+1
1 , yk+1

2 ) and the corresponding error vector γ k+1 = (γ k+1
1 , γ k+1

2 ).

where λmax(P) denotes the largest eigenvalue of the matrix P and the operator Tσ is a
soft-thresholding operator defined as

(Tσ (x))i = sgn(xi )[|xi | − σ ]+, (15)

with sgn(·) being a signum function and [xi ]+ means max(xi , 0).
The y1-subproblem in Step 2b of Algorithm 1 can be read as

yk+1
1 ≈ argmin

y1
Lβ

(
xk+1, y1, ỹ

k+1
2 ; zk

)
+ 1

2

∥∥∥y1 − yk1

∥∥∥2
Q̃1

, (16)

which can be computed inexactly by Newton iterative method and then the corresponding
error vector γ k+1

1 can be obtained.
The y2-subproblem in Step 2b is equivalent to solving the following linear system:

γ k+1
2 ∈ HT (Hy2 − yk+1

1 )

σ 2 − βWT
(
xk+1 − Wy2 + lk

β

)
+ (Σg + Q̃2)(y2 − yk2 ). (17)

Under the periodic boundary condition (BC) for y1, and since WTW = I , where I is
identity matrix. We can use Fourier transform to compute the solution of (17).
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3.2 Convergence Analysis

In this section, we first give the Karush-Kuhn-Tucker (KKT) condition, and prove the con-
vergence of the simplified algorithm under the premise that the solution exists.

It follows from [29] that (x̄, ȳ) ∈ X ×Y is the solution of problem (9) if and only if there
is a Lagrangian multiplier l̄ ∈ L of the augmented Lagrangian function for (9), such that
(x̄, ȳ, l̄) ∈ X × Y × L is the solution of the following KKT conditions

0 ∈ ∂ p(x) + l, 0 ∈ ∂q(y) + ∇g(y) − WT l, 0 = x − Wy2. (18)

We denote z := (x, y, l) and Z := X ×Y ×L, then the solution set of KKT system (18) for
problem (9) is denoted by Z̄ .

Let θ : V → (−∞,+∞] be a closed convex function, then the Moreau-Yosida proximal
mapping Πθ(v) related to θ is defined as

Πθ(v) := argmin
v′∈V

{
θ(v′) + 1

2
‖v′ − v‖2

}
, ∀v ∈ V. (19)

The Moreau-Yosida proximal map [17] is a globally Lipschitz, that is,

‖Πθ(v) − Πθ(v
′)‖2 ≤ 〈v − v′,Πθ (v) − Πθ(v

′)〉. (20)

We define the KKT mapping e(·) : Z → Z as

e(z) :=
⎛
⎝ x − Πp(x − I l)

y − Πq(y − (∇g(y) − WT l))
−x + Wy2

⎞
⎠ , ∀z ∈ Z. (21)

Note that there exists z∗ ∈ Z̄ if and only if e(z∗) = 0.
Next, for the positive semidefinite matrix Σg , we use the following decomposition:(

(Σg)11 (Σg)12
(Σg)

T
12 (Σg)22

)
, (22)

and define the matrices M and Ñ as follows:

M := P + β I T I = P + β I and Ñ := Σg + Q̃ + βWTW = Σg + Q̃ + β I . (23)

Accordingly, we further define Nd := Diag(N11,N22), where N11 := Q̃1 + (Σg)11 and
N22 := Q̃2 + (Σg)22 + β I .

From the above definitions, we have

Ñ =
(

N11
1
2 (Σg)12

1
2 (Σg)

T
12 N22

)
= Nd + Nr + N T

r , (24)

where Nr is the strictly upper triangular part of Ñ . Moreover, we define the following
matrices:

Q := Q̃ + sGS(Ñ ), N := Σg + Q + β I = Ñ + sGS(Ñ ), (25)

where sGS(N ) := NrN−1
d N T

r . Denote dk+1
y := γ k+1 + NrN−1

d (γ k+1 − γ̃ k+1). Then we
have the following proposition.

Proposition 2 The sequences {(xk, yk, lk)}, {γ k} and {γ̃ k} generated by the sGS-imsPADMM
are well-defined. For any k ≥ 0, dk+1

y satisfy

∥∥∥dk+1
y

∥∥∥2
N−1

≤ c′ε2k
(∥∥∥yk − yk−1

∥∥∥2
N

+
∥∥∥yk+1 − yk

∥∥∥2
N

)
, (26)

123



Journal of Scientific Computing            (2024) 99:54 Page 9 of 28    54 

where c′ is defined as

c′ :=
(
4

∥∥∥∥N− 1
2

d

∥∥∥∥
2

+ 2

∥∥∥∥N− 1
2

d (Nd + Nr )
−1

∥∥∥∥
2
)/

λ2minN > 0. (27)

Proof According to the sGS decomposition theorem ( [8], Proposition 4.1 and [21], Theorem
1), Proposition 4.1 [9] and Proposition 2 [19], we can readily show that the sequences are
well-defined and that (26) holds. 
�

We define the mapping R : X × Y by R(x, y) := x − Wy1, ∀(x, y) ∈ X × Y , and
introduce some notations in the following, for k ≥ 0,

Δk
x := xk − xk+1, Δk

y := yk − yk+1, rk := R
(
xk, yk

)
, l̃k+1 := lk + βrk+1, (28)

with the convention that ȳ0 = y0.

Lemma 1 [8, Lemma 5.1] Let {ak}k≥0 be a nonnegative sequence satisfying ak+1 ≤ ak + εk
for all k ≥ 0, where {εk}k≥0 is a nonnegative and summable sequence of real numbers. Then
the quasi-Fejér monotone sequence {ak} converges to a unique limit point.

In order to illustrate the relationship between the terms
∥∥zk+1 − zk

∥∥ ,
∥∥zk − zk−1

∥∥ and∥∥e(zk+1)
∥∥, we give the following two lemmas, whose proofs are similar to those in [9, 19]

and [39], respectively.

Lemma 2 Let {zk} be the sequence generated by the sGS-imsPADMM. For any k ≥ 1, we
have ∥∥∥e(zk+1)

∥∥∥2 ≤
∥∥∥zk+1 − zk

∥∥∥2
K1

+
∥∥∥zk − zk−1

∥∥∥2
K2

, (29)

where

K1 := c1Diag(I , I + β I , (ϑ2β)−1 I ), K2 := c2Diag(I , I , 0),⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c1 := max{c11, c21, c31},
c11 := 8 (λmax(P + β I ))2 ,

c21 := max

{
6

(
λmax

(
1

2
Σg + Q + β I

)
+ 1

2
λmax(Σg)

)2

, 4β I

}
,

c31 := β−1 + 7(1 − ϑ)2β I ,

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c2 := max{c12, c22},
c12 := 4max

k
{ε2k } (λmax(P + β I ))2 ,

c22 := 3max
k

{ε2k }
(

λmax

(
1

2
Σg + Q + β I

)
+ 1

2
λmax(Σg)

)2

.

Lemma 3 Let e : X → (−∞,+∞) be a smooth convex function and assume that there
exists a self-adjoint positive semidefinite linear operator P such that, for any given x ′ ∈ X ,

e(x) ≤ e(x ′) + 〈∇e(x ′), x − x ′〉 + 1

2

∥∥x − x ′∥∥2
P . (30)
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Then, for any x1, x2 ∈ X , we obtain

〈∇e(x1) − ∇e(x ′), x2 − x ′〉 ≥ −1

4
‖x1 − x2‖2P . (31)

For any k ≥ 1, we define for any z ∈ Z and k ≥ 0,

φk (z) := 1

ϑβ

∥∥∥l − lk
∥∥∥2 +

∥∥∥x − xk
∥∥∥2
P

+
∥∥∥y − yk

∥∥∥2
N

+ (1 + ν)

∥∥∥yk − yk−1
∥∥∥2

Σg+Q+ νβ
1+ν

I
.

(32)

The following proposition is essential for establishing the convergence.

Proposition 3 Suppose that the solution set Z̄ to the KKT system of problem (9) is nonempty.
Let {zk} be the sequence generated by the sGS-imsPADMMwith relative error control. Then,
for any z̄ := (x̄, ȳ, l̄) ∈ Z̄ , k ≥ 1 and ν > 0,

∥∥∥�k
x

∥∥∥2
P

+
∥∥∥�k

y

∥∥∥2
O

− 2ν

(∥∥∥�k
x

∥∥∥2
M

+
∥∥∥�k

y

∥∥∥2
N

)
+ ω̂

∥∥∥rk+1
∥∥∥2

≤ φk(z̄) −
(
1 − ε2k

ν

)
φk+1(z̄) + ω

∥∥∥rk
∥∥∥2 −

(
1 − ε2k

ν

)
ω

∥∥∥rk+1
∥∥∥2

− ε2k

ν

∥∥∥xk+1 − x̄
∥∥∥2
P

,

(33)

where ω := β(1−min{ϑ, ϑ−1}), ω̂ := β(1−ϑ +min{ϑ, ϑ−1}) andO := 1
2Σg +Q+ ω̂ϑ I .

Proof The proof of Proposition 3 is detailed in the Appendix A.1. 
�
Nowwe present the convergence result of the proposed sGS-imsPADMMin the following.

Theorem 1 Suppose that the solution set Z̄ to the KKT system of problem (7) is nonempty
and {zk} is generated by the sGS-imsPADMM. Assume that

M = P + β I > 0 and G := Σg + Q + νβ

1 + ν
I > 0. (34)

Then, we get the sequence {zk} converges to a point in Z̄.

Proof The proof of Theorem 1 is detailed in the Appendix 1. 
�

4 Numerical Experiments

In this section, to demonstrate the effectiveness of the proposed model/method, we compared
our model/method with other models/methods: the DZ model [11], the HNZ model [14], the
FL model [18], the EM-CNN method [36], and the PARM model [24]. All the experiments
have been successfully tested inMATLABR2019b (Windows 10) and were run on a PCwith
Intel(R) Core(TM) i5-6200U CPU @2.30 GHz and 8 GB of RAM.

In our experiments, the quality of the recovered images is measured quantitatively by the
peak signal noise ratio (PSNR) and the structural similarity index measure (SSIM) [37]. Note
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Table 1 Explanation of symbols for blur with mixed noise

Symbol Blur σ K Symbol Blur σ K

MB1 MB(9,30) 1 100 GB1 GB(5,2) 1 100

MB2 MB(15,60) 5 50 GB2 GB(9,4) 5 50

MB3 MB(10,120) 10 30 GB3 GB(9,4) 10 30

that larger PSNR and larger SSIM values mean better restored results. If the image size is
m × n, then PSNR is defined as follows:

PSNR = 10 log
mnmax(max(ŷ2),max(y2))2

‖ŷ2 − y2‖2 , (35)

where ŷ2 and y2 are the restored image and the original image, respectively. Based on the
KKT mapping (21), the iteration for our models is terminated when the following condition
is met [8]:

‖e(zk+1)‖ < 10−4. (36)

4.1 Parameter Setting

For all these methods, we adjust the parameters within a specific range to achieve the best
PSNR values and visually the best-restored images. For our model, we select the regulariza-
tion parameter α in the range [3, 9], λ in the range [0.01, 0.04] and μ in the range [1, 1.8].
In addition, Fig. 2 displays the restoration results obtained by our model under the MB1 (the
symbol is presented in Table 1) with different values of parameters. The step-length ϑ is set
to be ϑ = 1.618 ∈ (0, (1 + √

5)/2) for guaranteed convergence, and the sequence {εk} that
we used is chosen such that εk ≤ 1/k.

In this experiment, six images (all of the size 256 × 256) are given in Fig. 1 to test the
performance of the proposed model. To generate the observed images, the test images are
contaminated with different blurring motion blur (MB) and Gaussian blur (GB), different
standard deviations σ=1, 5 and 10 for Gaussian noise and different shape parameters K=30,
50 and 100 for Gamma noise. The larger σ is, the more serious the additive Gaussian noise
is. On the contrary, the smaller K is, the more serious the multiplicative Gamma noise is. For
MB, we use len = 9, 10 and 15 with an angle of 30, 60 and 120, where len represents
the motion translation length of motion blur, angle represents the angle of motion rotation.
As for GB, the blurring kernels to be tested are of size 5 × 5 and 9 × 9. Then, the standard
deviations in GB are set as 2 and 4. Furthermore, we use the notation of MB(9,30) to denote
the case of motion blur of len = 9 with an angle of 30. Similarly, GB(5,2) will be set for
a Gaussian kernel of size 5 × 5 and a standard deviation of 2. Specifically, we define the
symbol MB1 to be MB(9,30) with additive Gaussian noise of standard deviation of σ = 1
and multiplicative Gamma noise of K = 100. In the same way, we define the symbol GB2 to
be GB(9,4) with additive Gaussian noise of standard deviation of σ = 5 and multiplicative
Gamma noise of K = 50. All the symbols are presented in Table 1.

4.2 Comparison with Other Models

In order to reflect the role of the quadratic penalty in the proposed model, we first compare
the results without the penalty. The model without quadratic penalty is reduced to
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Fig. 1 Standard test images

Fig. 2 Plots of PSNR(dB) value versus every parameter in our model for different test images at MB1

min
u>0,w

〈
log u + f

u
, 1

〉
+ ‖Hw − u‖22

2σ 2 + μ‖Ww‖1. (37)

Figure 3 shows the comparison results of the simplified model and the proposed model.
It can be observed from the image that the model without penalty term performs poorly in
denoising. This example demonstrates the importance of penalty.

Next, we compare the recovery results of the simple approach with a common least-square
term ‖u − f ‖22 (denoted as Mod. 1). The model can be formulated as

min
u>0,w

〈
log u + f

u
, 1

〉
+ α ‖u − f ‖22 + ‖Hw − u‖22

2σ 2 + μ‖Ww‖1. (38)
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Fig. 3 Comparison of simplified model for image restoration effect and PSNR(dB)/SSIM values, respectively.
a and e are ground truth; b and f are the images degraded with GB1 and MB1, respectively; c and g are the
images degradation results of the simplified model; d and h are the images degradation results of ours

According to Proposition 1, we can conclude, if α ≥ 1
54 f 2

, the model (38) is component-
wise convex on u. In addition, the image restoration effect is shown in Sect. 4.3. It can be
found from the numerical results in Table 2 and Table 3 that the image degradation becomes
more serious, the restoration effect of the Mod. 1 decreases more. The Mod. 1 is less robust.

To demonstrate that our tightframe-based model is influential, we present the comparison
with the TV-based model (denoted as TV model). The TV-based model can be formulated as

min
u>0,w

〈
log u + f

u
, 1

〉
+ α

∥∥∥√
u − √

f
∥∥∥2
2
+ ‖Hw − u‖22

2σ 2 + μ1‖∇w‖1. (39)

We use the sGS-imsPADMM method to solve (39). In order to apply sGS-imsPADMM, we
express the minimization problem (39) as an equivalent form:

min
u,w,c

〈
log u + f

u
, 1

〉
+ α

∥∥∥√
u − √

f
∥∥∥2
2
+ ‖Hw − u‖22

2σ 2 + μ1‖c‖1,
s.t. c − ∇w = 0.

(40)

Let y1 = u, y2 = w and y = (y1, y2), c ∈ C and y ∈ Y , when α ≥ (3−inf f )
√
6

9 sup
√

f
, according

to Sect. 3, for any h := (c, y, p) ∈ C × Y × P and (c′, y′) ∈ C × Y . There exists a positive
semidefinite matrix Σh such that for y, y′ ∈ Y ,

g(y) ≤ ĝ(y; y′) := g(y′) + 〈∇g(y′), y − y′〉 + 1

2

∥∥y − y′∥∥2
Σh

. (41)

The majorized augmented Lagrangian function is given by

Lτ (c, y; (c′, y′, p)) = μ‖c‖1 + q(y) + ĝ(y; y′) + 〈p, c − ∇w〉 + τ

2
‖c − ∇w‖22 , (42)
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Table 2 PSNR (dB), SSIM for motion blur with different noise levels

Images Methods PSNR SSIM

MB1 MB2 MB3 MB1 MB2 MB3

Test 1 DZ 25.69 23.07 24.94 0.7413 0.6712 0.6983

HNZ 27.47 24.33 24.20 0.7872 0.6893 0.7310

FL 27.12 25.09 25.39 0.7262 0.6957 0.6864

EM-CNN 25.33 23.73 24.52 0.7052 0.6095 0.5981

PARM 26.19 23.15 25.03 0.7731 0.6886 0.6923

TV 28.19 25.57 25.67 0.7508 0.7011 0.6674

Mod. 1 27.19 23.45 18.76 0.7721 0.5463 0.2642

Ours 28.37 25.74 25.85 0.7895 0.7194 0.7493

Test 2 DZ 27.36 24.51 25.16 0.7341 0.7035 0.6580

HNZ 27.20 24.04 23.08 0.7812 0.7456 0.7425

FL 27.66 26.03 25.45 0.7252 0.7285 0.6977

EM-CNN 26.99 25.13 24.80 0.7609 0.6902 0.6543

PARM 27.30 24.39 24.71 0.7806 0.7400 0.6589

TV 27.60 26.34 25.79 0.7701 0.7440 0.7219

Mod. 1 27.91 24.54 18.62 0.7666 0.5912 0.2667

Ours 29.26 26.96 26.20 0.8012 0.7606 0.7458

Test 3 DZ 27.05 25.76 26.28 0.8165 0.7682 0.7571

HNZ 28.78 26.98 26.82 0.4789 0.7914 0.7426

FL 28.17 26.83 26.76 0.7575 0.7699 0.7740

EM-CNN 26.82 25.35 26.06 0.7981 0.7169 0.6908

PARM 27.48 26.04 26.43 0.8226 0.7688 0.7241

TV 28.61 26.98 26.95 0.8378 0.7951 0.7854

Mod. 1 27.89 25.80 21.55 0.8285 0.6450 0.3335

Ours 29.17 26.95 26.48 0.8544 0.7964 0.8017

Test 4 DZ 28.90 27.31 27.91 0.6965 0.6613 0.6473

HNZ 29.22 27.45 24.76 0.7176 0.6598 0.5271

FL 28.51 27.16 26.85 0.6687 0.6518 0.6290

EM-CNN 28.32 26.92 27.11 0.6417 0.5624 0.5515

PARM 28.92 27.85 28.06 0.6959 0.6719 0.6643

TV 29.05 27.89 27.95 0.6984 0.6723 0.6776

Mod. 1 28.96 25.66 18.24 0.7160 0.4429 0.1815

Ours 29.07 28.13 28.09 0.6950 0.6775 0.6841

Test 5 DZ 22.44 20.32 21.57 0.6173 0.5164 0.5689

HNZ 23.42 21.47 21.34 0.6684 0.5792 0.5912

FL 24.04 22.28 22.51 0.6173 0.5963 0.6165

EM-CNN 22.35 20.15 21.40 0.6119 0.4854 0.5350

PARM 22.48 20.29 21.59 0.6281 0.5255 0.5774

TV 24.08 22.14 22.63 0.6986 0.5996 0.6206
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Table 2 continued

Images Methods PSNR SSIM

MB1 MB2 MB3 MB1 MB2 MB3

Mod. 1 23.50 21.37 18.47 0.6675 0.4876 0.3217

Ours 24.46 22.46 22.70 0.7034 0.6057 0.6268

Test 6 DZ 21.82 19.79 21.01 0.6680 0.5973 0.5631

HNZ 22.41 20.35 19.57 0.6066 0.5981 0.4857

FL 22.68 20.95 21.17 0.6754 0.6369 0.6004

EM-CNN 21.20 19.96 20.76 0.5998 0.4875 0.4918

PARM 21.88 20.26 21.03 0.6888 0.6207 0.6334

TV 22.98 21.28 21.66 0.6151 0.6161 0.6504

Mod. 1 22.64 20.59 16.46 0.6261 0.3863 0.2271

Ours 23.21 21.46 21.74 0.6932 0.6433 0.6353

Average DZ 25.54 23.46 24.48 0.7123 0.6530 0.6487

HNZ 26.42 24.10 23.30 0.6733 0.6772 0.6366

FL 26.36 24.72 24.68 0.6951 0.6799 0.6673

EM-CNN 25.17 23.54 24.11 0.6863 0.5920 0.5869

PARM 25.71 23.66 24.48 0.7315 0.6693 0.6584

TV 26.75 25.03 25.11 0.7285 0.6880 0.6872

Mod. 1 26.35 23.57 18.68 0.7295 0.5166 0.2658

Ours 27.26 25.28 25.18 0.7561 0.7005 0.7067

In the last line of the table, we compute the average values

where τ is the penalty parameter and p is the Lagrangian multiplier. The sGS-imsADMM
algorithm with a relative error criterion for solving (42) is presented in Algorithm 2. The
image restoration effect is shown in Subsection 4.3.

4.3 Image Restoration Results Under Mixed Noise with Motion Blur

Figure 4 presents the visual effects of image degradation by additive noise, multiplicative
noise, Gaussian blur, motion blur, andmixed noise with blur. It can be seen that multiplicative
noise destroys the amount of image information, so the destruction of image information
with blur and mixed noise is more serious. Therefore, we compare our models with some
multiplicative noise models to show the superiority of the proposed models in removing
mixed noise and blur. In Fig. 4, “Test 1" is degraded by Gaussian noise, Gamma noise and
motion blur, respectively. (a)–(c) show the visual effects of different degraded images, (d)
shows the image degraded by MB2. Similarly, (e)–(g) show the degradation of “Test 2" by
Gaussian noise, Gamma noise and Gaussian blur, respectively. (h) shows the image degraded
by GB3, and image degradation in (d) and (h) are the most serious. Image restoration in this
case is even more difficult.

Table 2 shows the numerical results of the restored images by different methods. The
best results in each case are highlighted in bold. It can be seen that our model achieves best
data results in most cases under different degradation levels. In addition, our model gets a
satisfactory result in terms of average values of SSIM and PSNR.

In order to more clearly demonstrate the advantages of our model, we present the visual
effects of image restoration at a lower level of image degradation.We also display the zoomed
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Table 3 PSNR (dB), SSIM for Gaussian blur with different noise levels

Images Methods PSNR SSIM

GB1 GB2 GB3 GB1 GB2 GB3

Test 1 DZ 27.69 24.45 24.31 0.7741 0.6569 0.6811

HNZ 28.87 25.46 25.17 0.8039 0.7312 0.6923

FL 28.09 25.53 24.70 0.7606 0.7354 0.7169

EM-CNN 27.31 23.73 23.75 0.7410 0.6095 0.5805

PARM 28.08 24.73 24.41 0.8022 0.7229 0.6754

TV 28.91 25.97 25.20 0.7609 0.7234 0.7101

Mod. 1 29.02 25.35 21.73 0.7939 0.6656 0.4042

Ours 29.45 26.51 25.39 0.8040 0.7508 0.7375

Test 2 DZ 27.76 25.34 25.20 0.7459 0.6333 0.6494

HNZ 28.14 25.99 24.82 0.7945 0.7444 0.7058

FL 28.16 26.27 25.57 0.7704 0.7438 0.7282

EM-CNN 27.46 25.13 24.86 0.7784 0.6902 0.6420

PARM 27.70 25.54 24.81 0.7922 0.7474 0.6461

TV 28.22 26.46 25.82 0.7770 0.7568 0.7365

Mod. 1 28.29 25.97 21.73 0.7827 0.6767 0.4154

Ours 29.46 27.10 25.93 0.7910 0.7574 0.7458

Test 3 DZ 28.16 26.41 25.84 0.8373 0.7554 0.7425

HNZ 29.65 27.14 26.83 0.8510 0.7969 0.7761

FL 28.95 26.99 26.44 0.8048 0.7901 0.7837

EM-CNN 28.09 25.82 25.55 0.8221 0.7288 0.6749

PARM 28.70 26.57 25.95 0.8437 0.7810 0.7077

TV 29.21 27.11 26.56 0.8179 0.7931 0.7829

Mod. 1 28.86 26.53 23.67 0.8462 0.7639 0.5043

Ours 29.90 27.11 25.89 0.8621 0.7989 0.7857

Test 4 DZ 29.49 27.67 27.66 0.7113 0.6195 0.6373

HNZ 29.69 28.21 27.33 0.7288 0.6799 0.6332

FL 29.10 27.58 27.08 0.6930 0.6687 0.6615

EM-CNN 28.96 27.36 26.92 0.6596 0.5648 0.5390

PARM 29.39 28.32 27.74 0.7048 0.6781 0.6519

TV 29.39 28.26 27.56 0.7101 0.6814 0.6278

Mod. 1 29.41 27.31 21.77 0.7148 0.6090 0.3146

Ours 29.69 28.41 27.74 0.7325 0.6849 0.6726

Test 5 DZ 23.64 21.25 21.10 0.6687 0.5380 0.5360

HNZ 24.64 22.12 21.82 0.7134 0.5970 0.5822

FL 25.00 22.41 21.83 0.7247 0.6144 0.5850

EM-CNN 23.67 21.11 20.93 0.6707 0.5203 0.4966

PARM 23.59 21.30 21.10 0.6722 0.5641 0.5398
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Table 3 continued

Images Methods PSNR SSIM

GB1 GB2 GB3 GB1 GB2 GB3

TV 25.06 22.29 21.76 0.7372 0.6079 0.5787

Mod. 1 24.84 22.16 20.31 0.7203 0.5642 0.4193

Ours 25.35 22.62 22.08 0.7438 0.6172 0.5963

Test 6 DZ 22.69 20.64 20.63 0.7089 0.4916 0.5385

HNZ 22.99 20.69 20.52 0.7427 0.6242 0.5853

FL 23.37 20.80 20.19 0.7221 0.6402 0.6209

EM-CNN 22.37 20.51 20.41 0.6499 0.4950 0.4653

PARM 22.75 20.81 20.65 0.7231 0.6275 0.6047

TV 23.66 21.01 20.43 0.7171 0.6391 0.6094

Mod. 1 23.60 21.19 18.85 0.6608 0.5015 0.3132

Ours 23.74 21.39 21.09 0.7619 0.6425 0.6226

Average DZ 26.57 24.29 24.12 0.7410 0.6158 0.6308

HNZ 27.33 24.94 24.42 0.7724 0.6956 0.6625

FL 27.11 24.93 24.30 0.7459 0.6988 0.6827

EM-CNN 26.31 23.94 23.74 0.7203 0.6014 0.5664

PARM 26.70 24.55 24.11 0.7564 0.6868 0.6376

TV 27.41 25.18 24.56 0.7534 0.7003 0.6742

Mod. 1 27.34 24.75 21.34 0.7531 0.6302 0.3952

Ours 27.93 25.52 24.69 0.7825 0.7086 0.6934

In the last line of the table, we compute the average values

Fig. 4 Images degradation results and PSNR(dB)/SSIM values. a and e are the images degraded by Gaussian
noise σ=5 and 10, respectively; b and f are the images degraded by Gamma noise K=50 and 30, respectively;
c and g are the images degraded by blurring MB(15, 60) and GB(9, 4), respectively; d and h are the images
degraded by MB2, GB3, respectively
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Algorithm 2 Inexact sGS-imsPADMM for solving (39).

Let ξ ∈ (0, (1 + √
5)/2) be the step-length and {ρk }k≥0 be a summable sequence of nonnegative numbers

satisfying
∑∞

k=0 ρ2k < +∞. Let S and T := Diag(T1,T2) be given matrix, we have

S ≥ 0, S + τ I T I > 0; 1

2
Σh + T ≥ 0,

1

2
Σh + T + τ∇T ∇ > 0.

For k = 0, 1, 2, ..., perform the following steps:
Step 1. Compute

ck+1 = argmin
c

Lτ

(
c, yk ; hk

)
+ 1

2

∥∥∥c − ck
∥∥∥2
S

.

Step 2a. (Backward GS sweep) Compute

ỹk+1
2 ≈ argmin

y2
Lτ

(
xk+1, yk1 , y2; hk

)
+ 1

2

∥∥∥y2 − yk2

∥∥∥2
T2

,

δ̃k+1
2 ∈ ∂y2 Lτ

(
xk+1, yk1 , ỹk+1

2 ; hk
)

+ T2
(
ỹk+1
2 − yk2

)
with

∥∥∥̃δk+1
2

∥∥∥ ≤ ρk

∥∥∥yk2 − yk−1
2

∥∥∥ .

Step 2b. (Forward GS sweep) Compute

yk+1
1 ≈ argmin

y1
Lτ

(
xk+1, y1, ỹ

k+1
2 ; hk

)
+ 1

2

∥∥∥y1 − yk1

∥∥∥2
T1

,

δk+1
1 ∈ ∂y1 Lτ

(
xk+1, yk+1

1 , ỹk+1
2 ; hk

)
+ T1

(
yk+1
1 − yk1

)
with

∥∥∥δk+1
1

∥∥∥ ≤ ρk

∥∥∥yk+1
1 − yk1

∥∥∥ .

yk+1
2 ≈ argmin

y2
Lτ

(
xk+1, yk+1

1 , y2; hk
)

+ 1

2

∥∥∥y2 − yk2

∥∥∥2
T2

,

δk+1
2 ∈ ∂y2 Lτ

(
xk+1, yk+1

1 , yk+1
2 ; hk

)
+ Q̃2

(
yk+1
2 − yk2

)
with

∥∥∥δk+1
2

∥∥∥ ≤ ρk

∥∥∥yk+1
2 − yk2

∥∥∥ .

Step 3. Compute

pk+1 = pk + ξτ
(
ck+1 − ∇W

)
.

For any k ≥ 0, set yk+1 := (yk+1
1 , yk+1

2 ) and the corresponding error vector δk+1 = (δk+1
1 , δk+1

2 ).

regions of the restoration results in Figs. 5 and 6. It can be seen that the images recovered
by our methods achieve the best quality concerning mixed noise removal and deblurring
simultaneously. In Fig. 5, we observe that the DZ method [11], the HNZ model [14], the
EM-CNN method [36], and the PARM method [24] can not completely remove the blur.
Note that the FL method [18] and TV method results still have some motion blur in the red
and green zoomed areas. There is still a lot of noise in the recovery results of the Mod. 1.
The results of our model in these two aspects are satisfactory. A similar situation is shown in
Fig. 6, the restoration results of the FL method and TV method in red enlarged areas can not
remove the blur completely, where the number “96" is indistinct in the middle as if linked
together. Moreover, it seems that the TV method results in stair-casing artifacts. Essentially,
the traditional TV regularization will cause the stair-casing effect in the smooth area of the
reconstructed image, and the texture information of the image can not be retained well.

4.4 Image Restoration Results Under Mixed Noise with Gaussian Blur

In this experiment, we degrade the standard test images Fig. 1 by mixed noise with Gaussian
blur at GB1, GB2, and GB3. Table 3 shows the numerical results of the restored images by
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Fig. 5 The restoration results on “Test 1” with zoomed region and PSNR(dB)/SSIM values. a Ground truth.
b Images degraded by MB(15, 60) with σ=1 and K=600. The denoising and deblurring results of: c DZ, d
HNZ, e FL, f EM-CNN, g PARM, h TV model, i Mod. 1 and j ours, respectively

Fig. 6 The restoration results on “Test 5" with zoomed region and PSNR(dB)/SSIM values. a Ground truth. b
Images degraded by MB(9, 30) with σ=1 and K=600. The denoising and deblurring results of: c DZ, d HNZ,
e FL, f EM-CNN, g PARM, h TV model, i Mod. 1 and j ours, respectively

different methods and the better results are marked in black. Consequently, our method has
the best numerical results at the average values of PSNR and SSIM.

Figures 7 and 8 show the image restoration results under mixed noise with Gaussian blur.
As illustrated in Fig. 7, the recovery results of theDZmethod, theHNZmethod, the EM-CNN
method, and the PARM method are too smooth and the texture details are blurred.

Specifically, the reconstructed images of the FL method and TV method have staircase
effects, andweobserve that theTVmethod andMod. 1 are not completely denoised.However,
our method yields the best visual effects in keeping the image sharp and removing noises.
The situation in Fig. 8 is similar, we can see a significant step-up effect in the “shadows"
of the red magnification areas in (e) and (f). Consequently, our method has the best image
quality in terms of preserving edges and removing mixed noises.
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Fig. 7 The restoration results on “Test 2" with zoomed region and PSNR(dB)/SSIM values. a Ground truth.
b Images degraded by GB(5, 2) with σ=5 and K=600. The denoising and deblurring results of: c DZ, d HNZ,
e FL, f EM-CNN, g PARM, h TV model, i Mod. 1 and j ours, respectively

Fig. 8 The restoration results on “Test 1" with zoomed region and PSNR(dB)/SSIM values. a Ground truth.
b Images degraded by GB(5, 2) with σ=5 and K=300. The denoising and deblurring results of: c DZ, d HNZ,
e FL, f EM-CNN, g PARM, h TV model, i Mod. 1 and j ours, respectively

Figure 9 shows the denoised and deblurred results of residue on the “Test 1" image. In
this sense, the noise residue of ours contains less useful information than the other models,
and the solution contains more textures and structure [38].

4.5 Comparison of ADMM and sGS-imsPADMMAlgorithm

In order to demonstrate the advantages of the sGS-imsPADMM algorithm, we compared the
difference between the sGS-imsPADMM algorithm and the ADMM algorithm in terms of
image restoration effect, CPU-time, and number of iterations. Numerical results are shown in
Table 4. It can be seen that the ADMM algorithm requires more iterations and more time, and
the sGS-imsPADMM is nearly 2 times faster than the ADMM algorithm. To visually demon-
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Fig. 9 The restoration results and the corresponding residual results. a The degraded images restored from
“Test 1" at GB3 by different methods. b Gamma noise component. c Gaussian noise component. d Gaussian
blur component. 1st row through 8th row: the restoration results of DZ, HNZ, FL, EM-CNN, PARM, TV
model, Mod. 1 and ours, respectively
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Fig. 10 1st, 2nd column: The plots of relative error, PSNR with CPU-time. Blue line: ADMM. Red line: sGS-
imsPADMM. 3rd, 4th column: The restoration results of ADMM, sGS-imsPADMM with PSNR(dB)/SSIM.
c–d, g–h Images “Test 1, Test 3" are degraded by GB1. k–l, o–(p) Images “Test 5, Test 6" are degraded by
MB1

strate the advantages of sGS-imsPADMM algorithm compared with the ADMM algorithm,
we compared the plots of PSNR and relative error with CPU-time of sGS-imsPADMM algo-
rithm andADMMalgorithm in Fig. 10. For convenience, we discussed the result of the image
restoration on the “Test 1, Test 3" degraded byGB1 and the “Test 5, Test 6" degraded byMB1.
Next, we compared the effects of two algorithms, ADMM and sGS-imsPADMM. Compared
with the ADMMalgorithm, the sGS-imsPADMMalgorithm shows faster convergence effect.

5 Conclusion

In this paper, we presented a novel model for restoring blurred images with mixed noise,
which incorporates wavelet tight frame regularization. The convexity of the model is ensured
by a convexity-preserving term introduced in the model. Using sGS-imsPADMM with rela-
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Table 4 The values of PSNR, SSIM, CPU-time in seconds and number of internal and external iteration steps

Deg Image Algorithm PSNR (dB) SSIM CPU-time (s) Inner Outer

GB1 Test 1 ADMM 29.36 0.8016 14.60 245 77

Ours 29.45 0.8040 7.74 127 63

Test 2 ADMM 29.41 0.8054 18.85 324 103

Ours 29.46 0.7911 10.31 171 85

Test 3 ADMM 29.88 0.8613 18.31 279 89

Ours 29.90 0.8621 7.34 111 59

MB1 Test 4 ADMM 28.87 0.6773 13.88 154 75

Ours 29.07 0.6950 8.45 139 69

Test 5 ADMM 24.40 0.6946 17.32 291 96

Ours 24.46 0.7034 9.88 161 80

Test 6 ADMM 23.14 0.6712 16.21 265 84

Ours 23.21 0.6932 9.32 149 74

tive error control, we have effectively solved our proposedmodel and proved the convergence
of the algorithm to a stationary point of the objective function. Our experiments have demon-
strated that the proposed method outperforms several advanced methods and achieves the
best image quality. Furthermore, the sGS-imsPADMMalgorithm is nearly 2 times faster than
ADMM. We have also successfully applied sGS-imsPADMM with relative error control for
removing mixed noise and blur. In future work, we plan to explore the application of this
algorithm to other problems, such as unknown types of noise with blur.
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A: Appendix

A.1: Proof of Proposition 3

Proof For any given z = (x, y, l) ∈ Z, we define xe := x − x̄ , ye := y − ȳ and le := l − l̄.
Note that

R
(
xk+1
e , yk+1

e

)
= R

(
xk+1, yk+1

)
= (ϑβ)−1

(
lk+1 − lk

)
= (ϑβ)−1

(
lk+1
e − lke

)
. (43)

Then, by using

dk+1
y ∈ ∂y Lβ

(
xk+1, yk+1; zk

)
+ Q

(
yk+1 − yk

)
, (44)

we know that

dk+1
y − ∇g(yk) − WT l̃k+1 + (

Σg + Q
)
Δk

y ∈ ∂q(yk+1). (45)

Now the KKT point (x̄, ȳ, l̄) (18) and the convexity of g implies that〈
dk+1
y + ∇g(ȳ) − ∇g(yk) + WT l̄ − WT l̃k+1 + (

Σg + Q
)
Δk

y, y
k+1
e

〉
≥ 0. (46)

In addition, from Lemma 3, the above formula can be obtained

〈
dk+1
y − WT (l̃k+1 − l̄) + (

Σg + Q
)
Δk

y, y
k+1
e

〉
≥

〈
∇g(yk) − ∇g(ȳ), yk+1

e

〉
≥ −1

4

∥∥∥Δk
y

∥∥∥2
Σg

.

(47)

Similarly, for any x ∈ X , combining (18) with (44), we have the following inequality〈
−lk − βR(xk+1, yk) + PΔk

x , x
k+1
e

〉
≥ p(xk+1) − p(x̄) ≥ −

〈
l̄, xk+1

e

〉
. (48)

Next, add up the above two inequalities to get (49)〈(
Σg + Q

)
Δk

y + dk+1
y , yk+1

e

〉
+

〈
l̄ − lk − βR(xk+1, yk), xk+1

e

〉

+
〈
WT l̄ − WT l̃k+1, yk+1

e

〉
+

〈
PΔk

x , x
k+1
e

〉
≥ −1

4

∥∥∥Δk
y

∥∥∥2
Σg

.
(49)

According to the Cauchy–Schwartz inequality, we obtain

〈
dk+1
y , yk+1

e

〉
≤ ν

2ε2k

∥∥∥dk+1
y

∥∥∥2
N−1

+ ε2k

2ν

∥∥∥yk+1
e
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N

≤ ν

2

∥∥∥�k
y
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N

+ ν

2

∥∥∥�k−1
y

∥∥∥2
N

+ ε2k

2ν

∥∥∥yk+1
e

∥∥∥2
N

.

(50)

Furthermore, we have the following two equations〈(
Σg + Q

)
Δk

y + dk+1
y , yk+1

e

〉

= 1

2

(∥∥∥yke
∥∥∥2

Σg+Q
−

∥∥∥yk+1
e
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Σg+Q

)
− 1

2
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y
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+
〈
dk+1
y , yk+1

e

〉
,

(51)

and 〈
PΔk

x , x
k+1
e

〉
= 1

2

(∥∥∥xke
∥∥∥2
P

−
∥∥∥xk+1

e

∥∥∥2
P

)
− 1

2

∥∥∥Δk
x

∥∥∥2
P

. (52)
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By using the definition of l̃k+1, we have〈
WT l̄ − WT l̃k+1, yk+1

e

〉
+

〈
l̄ − lk − βR(xk+1, yk), xk+1

e

〉

= 1
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β I
−
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β I
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e
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)

− β

2
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(53)

Substituting (50)–(53) into (49), we obtain (54)
∥∥∥Δk

x

∥∥∥2
P

+
∥∥∥Δk

y

∥∥∥21
2Σg+Q

+ (1 − ϑ)β

∥∥∥rk+1
∥∥∥2 + β

∥∥∥R(xk+1, yk)
∥∥∥2

− ν

(∥∥∥�k
y

∥∥∥2
N

−
∥∥∥�k−1

y

∥∥∥2
N

)

≤ 1

ϑβ

(∥∥∥lke
∥∥∥2 −

∥∥∥lk+1
e

∥∥∥2
)

+
∥∥∥xke

∥∥∥2
P

−
∥∥∥xk+1

e

∥∥∥2
P

+
∥∥∥yke

∥∥∥2
N

− (1 − ε2k

ν
)
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.

(54)

Then, using Lemma 7 [22], we obtain the inequality

(1 − ϑ)β
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∥∥∥2 + β
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)
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(55)

Substitute the inequality into (54) and using (32), we have
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(
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)
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(56)

So far, the inequality (33) holds, and the proof is complete. 
�

A.2 Proof of Theorem 1

Proof Denote the self-adjoint linear operators:

J := Diag

(
P,N ,

1

ϑβ
I

)
+

(
ω + 1

4
ω̂

)
RTR,

K := Diag

(
P,O − 2νN ,

ω̂

4β2ϑ2 I

)
+ ω̂

8
RTR.

(57)
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According to Theorem 3.1 [9] and Proposition 4 [19], we have

(1 + ν)

∥∥∥�k
y
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(58)

Then, for integer j , we have
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(59)

Therefore it can be concluded that there exists a constant a′ > 0

(1 + ν)

∥∥∥�k
y

∥∥∥2
G

+
∥∥∥zk+1 − z̄

∥∥∥2
J

≤ a′.

Then, we know that the sequence {zk} is bounded. Combine with Proposition 4 [19], we
obtain ∞∑

k=0

∥∥∥zk+1 − zk
∥∥∥2
K

≤ a′ + a′
∞∑
k=0

ε2i

4ν
≤ +∞. (60)

According to Lemma 2, we have
∑∞

k=1

∥∥e(z)k∥∥2 < +∞, limk→∞(zk+1 − zk) = 0,
limk→∞

∥∥zk+1 − zk
∥∥
K1

= 0 and limk→∞
∥∥zk+1 − zk

∥∥
K2

= 0. Consequently, the subse-

quence {zki } converges to a cluster point z∞. By using Lemma 2, letting i → ∞, we have
e(z∞) = 0. Because inequality (59) satisfies the KKT point condition, we have
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(61)

Since for i → ∞, zki → z∞, for any given a > 0, i0 > 0, we obtain

(1 + ν)

∥∥∥yki0 − yki0−1
∥∥∥2
G

+
∥∥∥zki0 − z∞

∥∥∥2
J

≤ a
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(
1 + 4ε2k

ν

) .
(62)

Therefore, for any k > ki0 , we have
∥∥zk − z∞

∥∥2
J ≤ a. Note that J > 0. Consequently,

limk→∞ zk = z∞, and the sequence {zk} converges to theKKTpoint. The proof is completed.

�
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