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a b s t r a c t 

Color image restoration is one of the basic tasks in pattern recognition. Unlike grayscale image, each 

color image has three channels in the RGB color space. Due to the inner-relationship within the three 

channels, color image restoration is usually much more difficult than its grayscale counterpart. Indeed, 

new problems such as color artifacts could emerge when the grayscale image processing methods are 

extended to color images directly. Note that one of the most effective gray image restoration methods 

is the weighted nuclear norm minimization (WNNM) approach. However, when applied to color images, 

the results of WNNM are usually not as promising as that of grayscale images. In order to solve this 

problem, in this paper, we propose to restore color images with the quaternion-based WNNM method 

(QWNNM) since the structure of color channels can be well preserved with quaternion representation. 

The proposed model can be solved efficiently by the alternating direction method of multipliers (ADMM). 

The theoretical analysis of the optimal solution is also presented. Numerical experiments are carefully 

conducted with different kinds of degradation to illustrate the superior performance of our proposed 

QWNNM over the state-of-the-art methods, including a celebrated deep learning approach, in both visual 

quality and numerical results. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Color images corrupted by blur and noise are unavoidable in 

he process of image storage and transmission. Given the rapidly 

rowing role of color images in daily lives, color image restora- 

ion has become a popular research field. In the literature, remark- 

ble efforts have been put to recover color images from their cor- 

esponding degraded ones, such as the variation-based methods 

1] , the dictionary-based methods [2] , and the convolutional neu- 

al network-based methods [3,4] , etc. Most of the above methods 

re to handle the color image in the real number domain [5] . It is

ell known that color images consist of three color channels (red, 

reen, and blue in the RGB color space) with inner-relationships 

mong them [6] . If the three color channels in the real num- 

er space are treated as three stand-alone matrices [7] , the negli- 

ence of the inner-relationship among color channels is inevitable. 

ecently, due to its capability of well preserving the structure 
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f channels, the quaternion representation [8] has been widely 

sed in color image processing. For instance, Subakan and Ve- 

uri [9] presented color image smoothing and segmentation with 

he quaternion framework. Li et al. [10,11] handled the color im- 

ge denoising task with the quaternion-based non-local total vari- 

tion and non-local means. Chen et al. [12] and Yu et al. [13] de-

oised color images with quaternion-based low-rank regularizer. 

hi et al. [14] proposed a color histopathological image classifi- 

ation method based on quaternion Grassmann average network. 

uaternion neural networks were also applied to image denoising 

15] and classification [16] . However, color image deblurring in the 

uaternion domain remains a challenging problem. The difficulty 

f the task lies in how the blurring operator is dealt with. In the 

uaternion domain, the special multiplication rule makes the de- 

lurring task even harder. Restoring color images in the quaternion 

omain directly is still a big challenge and an open question. As 

ar as we know, Jia et al. [17] proposed a color image restoration 

odel based on quaternion by transforming the color image into 

he HSV color space instead of handling the quaternion represen- 

ation directly. In this paper, we propose a new quaternion-based 

https://doi.org/10.1016/j.patcog.2022.108665
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.108665&domain=pdf
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olor image restoration method. To solve the proposed model di- 

ectly in the quaternion domain, we design a special quaternion 

lurring matrix. 

Restoring a color image from the corresponding corrupted one 

s usually complicated [18,19] . Due to the fact that the high- 

imensional matrix inherently has a low-rank structure [20] , re- 

tricting the underlying image matrix to be low rank is often a bet- 

er approach [21] . The low-rank image restoration methods usually 

utperform methods based on nonlocal and block-matching and 

D filtering (BM3D) [22] . The nuclear norm minimization (NNM) 

s a common convex surrogate to the rank minimization problem. 

he NNM method treats every singular value equally, which means 

hat it posits all the singular values contain the same informa- 

ion, regardless of their sizes. However, many works [23,24] have 

ointed out that the larger singular values carry more data, which 

xplains why the NNM yields only sub-optimal results. Gu et al. 

25] proposed a method based on weighted nuclear norm mini- 

ization (WNNM) which assigned a weight to each singular value 

or grayscale image denoising. In 2016, Gu et al. [23] extended the 

pplication of the WNNM method, including grayscale image de- 

oising, background subtraction, color image inpainting, and color 

mage denoising. In the results of the image denoising schemes, an 

nteresting phenomenon is observed, namely that some color spots 

emain in the denoising results of color images, while the grayscale 

mages have almost perfect results. Interested readers may look up 

he reference [23] (Fig. 5) for details. 

The underlying difference between color and grayscale images 

s the color channels. If color images are denoted as the combi- 

ation of grayscale images, the inner-relationships between differ- 

nt channels will be totally ignored [26] . Moreover, it is not rea- 

onable to handle the color image with a low-rank approximation 

ethod by representing the color image as the linear combination 

f grayscale images. The three grayscale images that correspond 

o each channel have different singular value matrices. When we 

nly consider these singular values, the correlation between the 

hree matrices is not taken into account. Whereas representing the 

olor image as a pure quaternion matrix, all we need is to deal 

ith a quaternion singular value matrix. The relationship between 

he color channels can also be well utilized, hence the degraded 

mage can be better restored [27] . Given the similarity between 

he three color channels in color images and the three imaginary 

arts in pure quaternion matrices, we represent color images with 

ure quaternion matrices [28] in this paper. On the other hand, 

uaternion matrices have a special multiplication rule, which can 

e exploited to better present the internal structure of color im- 

ges [29] . Many researchers have presented theoretical analyses 

f the quaternions. Quaternion Fourier transform was studied in 

30] . Zhang gave some brief proofs of theories on quaternions and 

uaternion matrices [28] . The theory of quaternion matrix deriva- 

ives was studied in [31] . In 2017, Jia et al. [32] presented the the-

ry of the quaternion-based principal component analysis. Later, 
ig. 1. Color image restoration on Img26 with visual quality and numerical results (PSN

aussian noise level σ = 25 , restored image reconstructed by: (c) IRCNN [35] , (h) Our QW

2 
hen et al. [33] incorporated the singular value decomposition into 

he quaternion domain. Qi and Zhang [34] extended the theory 

f complex number domain into quaternion domain. These rich 

athematical tools grant us theoretical guarantees when quater- 

ion representation of color images is used. 

To ensure the color image restoration tasks can be well im- 

lemented, we represent the color image with a pure quaternion 

atrix. A preliminary result of the proposed model is displayed 

n Fig. 1 . To better demonstrate the visual quality and numeri- 

al results of the proposed model, we compare our model with 

he convolutional neural network-based method IRCNN [35] . From 

he restoration results, we can see that the quaternion representa- 

ion is better than the real-valued ones, even if it is a CNN-based 

ethod. Different from existing color image restoration methods, 

ur main contributions are as follows. 

• We develop the classical WNNM method to the quaternion do- 

main for color image restoration. We encode the color image as 

a pure quaternion matrix, such that more interconnected infor- 

mation among the RGB channels can be preserved. 
• To better recover the color image in the quaternion domain, we 

extend the 2-dimension blurring matrix to the quaternion do- 

main and design a quaternion blurring operator. 
• We solve the proposed model efficiently by the ADMM method 

and the theoretical analysis of the uniqueness of the solution is 

also presented. 
• Experiments show that the proposed method outperforms 

some state-of-the-art methods, including the CNN-based 

method. 

The outline of this paper is as follows. Section 2 reviews the 

asic concepts of quaternion algebra and the classical WNNM 

ethod. Section 3 presents the proposed model and theoretical 

nalysis. In Section 4 , numerical experiments and results are pre- 

ented and reported. Finally, we conclude our paper in Section 5 . 

. Related concepts 

.1. Quaternion 

Let R be the real number space with real numbers denoted by 

 , and H be the quaternion space with quaternions denoted by ˙ a . 

he quaternion was first introduced by Hamilton [8] . Suppose ˙ a is 

 quaternion, then it can be written as 

˙ 
 = a 0 + a 1 i + a 2 j + a 3 k, (1) 

here a 0 , a 1 , a 2 , a 3 ∈ R and i , j, k are the fundamental quater-

ion units which satisfy the quaternion rules i 2 = j 2 = k 2 = i jk =
1 . More specifically, the i j = k , jk = i , ki = j , j i = −k , k j =
i , ik = − j. Form i j = k , we know that i jk = kk = k 2 = −1 [8] .

et ˙ a = a 0 + a 1 i + a 2 j + a 3 k ∈ H , ˙ b = b 0 + b 1 i + b 2 j + b 3 k ∈ H , and
R/SSIM). (a) Original image, (b) degraded image with motion kernel (20, 60) and 

NNM. 
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i⎧⎪⎨
⎪⎩
∈ R , then we have 

˙ 
 + 

˙ b = (a 0 + b 0 ) + (a 1 + b 1 ) i + (a 2 + b 2 ) j + (a 3 + b 3 ) k, (2) 

λ ˙ a = (λa 0 ) + (λa 1 ) i + (λa 2 ) j + (λa 3 ) k, 

nd 

˙ 
 ̇

 b = (a 0 b 0 −a 1 b 1 −a 2 b 2 −a 3 b 3 ) + (a 0 b 1 + a 1 b 0 + a 2 b 3 −a 3 b 2 ) i (3) 

+ (a 0 b 2 −a 1 b 3 + a 2 b 0 + a 3 b 1 ) j + (a 0 b 3 + a 1 b 2 −a 2 b 1 + a 3 b 0 ) k. 

he conjugate and modulus of ˙ a are defined by 

˙ a ∗ = a 0 − a 1 i − a 2 j − a 3 k, (4) 

 ̇

 a | = 

√ 

a 2 
0 

+ a 2 
1 

+ a 2 
2 

+ a 2 
3 
. 

n particular, a pure quaternion ˙ c is defined as 

˙ 
 = c 1 i + c 2 j + c 3 k, (5) 

hich means the real part of a pure quaternion is equal to zero. 

 quaternion matrix can be written as ˙ D = D 0 + D 1 i + D 2 j + D 3 k ∈
 

m ×n . According to Eq. (1) , we see that a quaternion has three

maginary parts. Since color images are consist of three color chan- 

els, we represent a color image as a pure quaternion matrix, with 

ach pixel of an image considered as a pure quaternion (5) . Sup- 

ose ˙ u is a color image with quaternion matrix representation with 

hree components (red, green, and blue). Mathematically, we indi- 

ate ˙ u as 

˙ 
 = u r i + u g j + u b k, (6) 

here u r , u g , and u b are the RGB channels of ˙ u respectively. Every

ixel of ˙ u is a pure quaternion. 

The identity quaternion matrix ˙ I is the same as the classical 

dentity matrix. For example, if ˙ I ∈ H 

2 ×2 , then 

˙ 
 = 

(
1 + 0 i + 0 j + 0 k 0 + 0 i + 0 j + 0 k 

0 + 0 i + 0 j + 0 k 1 + 0 i + 0 j + 0 k 

)
. (7) 

 square quaternion matrix is unitary if ˙ D 

∗ ˙ D = 

˙ D ̇

 D 

∗ = 

˙ I . The norms 

f quaternion matrices and vectors are defined as follows. 

efinition 2.1. The � 2 -norm of quaternion vector ˙ a = α0 + α1 i + 

2 j + α3 k ∈ H 

n is ‖ ̇ a ‖ 2 := 

√ ∑ 

i 

| a i | 2 ; the � 2 -norm of quaternion

atrix is ‖ ̇ D ‖ 2 := max (σ ( ̇ D )) , where σ ( ̇ D ) is the set of singular

alues of ˙ D , and the Frobenius norm is ‖ ̇ D ‖ F := 

√ ∑ 

i, j 

| D i, j | 2 . 

efinition 2.2. The norm ‖ ̇ D ‖ 2 = 

√ 

tr ( ̇ D 

∗ ˙ D ) , where tr (·) is the 

race of matrix. tr (D ) = 

∑ min (m,n ) 
i =1 

δi , δi are the singular values of 

˙ 
 , i = 1 ,2, · · · , min (m, n ) . 

The singular value decomposition (SVD) of a quaternion matrix 

as proposed in [28] firstly. 

heorem 2.1. (Quaternion Singular Value Decomposition (QSVD)) 

et ˙ D ∈ H 

m ×n , then there exist two unitary quaternion matri- 

es ˙ U ∈ H 

m ×m and ˙ V ∈ H 

n ×n such that ˙ U 

˙ D ̇

 V ∗ = �, where � = 

iag ( σ1 , σ2 , . . . , σs ) , σi ≥ 0 are the singular values of ˙ D and s =
in ( m, n ) . 

.2. WNNM regularization 

The weighted nuclear norm minimization (WNNM) method was 

rst proposed by Gu et al. [25] for grayscale image denoising. Their 

odel can be written as 

in 

u 

λ

2 

‖ u − z‖ 

2 
2 + ‖ u ‖ w, ∗, (8) 

here λ is a positive parameter, u is the ideal image, z is the 

bserved image, and ‖ · ‖ w, ∗ denotes the weighted nuclear norm. 
3 
he model (8) has good performance in grayscale image denois- 

ng. Xie et al. gave the optimal solution of (8) [36] . Later, Gu et al.

howed some applications of the WNNM method [23] . Due to the 

ood performance and the existence of the optimal solution, the 

NNM regularization was widely used in image processing. Ma 

t al. [37] combined the WNNM and total variation regularizer 

or grayscale image deblurring. Yair and Michaeli [38] applied the 

ulti-scale strategy with WNNM for image restoration. [39] devel- 

ped a model with a new data fidelity term to tackle mixed noise 

mages. 

All the aforementioned WNNM-based methods handle grayscale 

r color image restoration in a monochromatic way. In other 

ords, they treat the three channels of the color image as three 

ndependent images and overlook the relationship between them. 

n this paper, we represent color images with pure quaternion ma- 

rices and extend the WNNM to the quaternion domain, which can 

etter preserve the color structure and generate better color image 

estoration results. 

. Proposed model 

In order to better preserve the inner-relationship of color chan- 

els, we represent the color image as a pure quaternion matrix. 

ore specifically, suppose ˙ u ∈ H 

m ×n is a color image, the corre- 

ponding pure quaternion representation is as 

˙ 
 = 

⎛ 

⎜ ⎜ ⎝ 

˙ u 11 , ˙ u 12 , · · · , ˙ u 1 n 

˙ u 21 , ˙ u 22 , · · · , ˙ u 2 n 

. . . 
˙ u m 1 , ˙ u m 2 , · · · , ˙ u mn 

⎞ 

⎟ ⎟ ⎠ 

, (9) 

here pure quaternion ˙ u i j = ˙ u r 
i j 

i + ˙ u 
g 
i j 

j + ˙ u b 
i j 

k denotes a pixel of ˙ u ,

 = 1 , 2 , · · · , m , j = 1 , 2 , · · · , n , here ˙ u r 
i j 

, ˙ u 
g 
i j 

, and ˙ u b 
i j 

are the red,

reen, and blue components, respectively. Suppose that ˙ f ∈ H 

m ×n is 

he observed image with quaternion representation, and ˙ u ∈ H 

m ×n 

s the ideal image with quaternion representation, our method can 

e written as follows 

in 

˙ u 

λ

2 

‖ ̇

 A ̇

 u − ˙ f ‖ 

2 
2 + ‖ ̇

 u ‖ w, ∗, (10) 

here ˙ A is a linear operator with quaternion representation and 

 · ‖ w, ∗ denotes the weighted nuclear norm. The weights w i for the 

 th singular of ˙ u follows the setting of WNNM [23] as 

 i = 

c 

σi + ε
, (11) 

here c is a compromising constant, σi is the i th singular of ˙ u , and 

is a small positive number. 

Due to the blur operation and the weighted nuclear norm, it 

s not easy to directly solve model (10) . Thanks to the alternat- 

ng direction method of multipliers (ADMM) solver, our model can 

e handled and get the exact solution, so that the restoration re- 

ults become more robust. By introducing the quaternion auxiliary 

ariable ˙ g ∈ H 

m ×n and quaternion multiplier ˙ η ∈ H 

m ×n and letting 

˙  = ˙ g , the augmented Lagrangian of (10) is formulated by 

 ( ̇ u , ˙ g ; ˙ η) = min 

˙ u , ̇ g , ̇ η

λ

2 

‖ ̇

 A ̇

 u − ˙ f ‖ 

2 
2 + ‖ ̇

 g ‖ w, ∗ + 

β

2 

‖ ̇

 u − ˙ g ‖ 

2 
2 + 〈 ̇ η, ˙ u − ˙ g 〉 , 

(12) 

here β > 0 is a penalty parameter. The ADMM iteration for solv- 

ng (12) goes as follows 
 

 

 

 

 

˙ u 

k +1 = arg min ˙ u L ( ̇ u , ˙ g k ; ˙ ηk ) , 

˙ g k +1 = arg min ˙ g L ( ̇ u 

k +1 , ˙ g ; ˙ ηk ) , 

˙ ηk +1 = ˙ ηk + ( ̇ u 

k +1 − ˙ g k +1 ) . 

(13) 
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Table 1 

Derivatives of Function of the Type h ( ̇ u ) in [31] . 

h ( ̇ u ) D ˙ u h Note 

˙ u 1 ˙ u ∈ H 
˙ μ ˙ u ˙ μ ∀ ̇ μ ∈ H 
˙ u ̇ ν 	 ( ̇ ν) ∀ ̇ ν ∈ H , 	 ( ̇ ν) denotes the real part of ˙ ν

˙ μ ˙ u ̇ ν + ˙ τ ˙ μ	 ( ̇ ν) ∀ ̇ μ, ˙ ν, ˙ τ ∈ H 
˙ u ∗ − 1 

2 
˙ u ∗ denotes the conjugation of ˙ u 

˙ μ ˙ u ∗ − 1 
2 

˙ μ ∀ ̇ μ ∈ H 
˙ u ∗ ˙ ν − 1 

2 
˙ ν∗ ∀ ̇ ν ∈ H 

˙ μ ˙ u ∗ ˙ ν + ˙ τ − 1 
2 

˙ μ ˙ ν∗ ∀ ̇ μ, ˙ ν, ˙ τ ∈ H 
˙ u −1 − ˙ u −1 	 ( ̇ u −1 ) ˙ u −1 denotes the reciprocal of ˙ u 

( ̇ u ∗) −1 1 
2 | ̇ u | 2 –

( ̇ μ ˙ u ̇ ν + ˙ τ ) 2 ˙ g ̇ μ	 ( ̇ ν) + ˙ μ	 ( ̇ ν ˙ g ) ˙ g = ˙ μ ˙ u ̇ ν + ˙ τ

( ̇ μ ˙ u ∗ ˙ ν + ˙ τ ) 2 − 1 
2 ̇
 g ̇ μ ˙ ν∗ − 1 

2 
˙ μ( ̇ ν ˙ g ) ∗ ˙ g = ˙ μ ˙ u ∗ ˙ ν + ˙ τ

| ̇ μ ˙ u ̇ ν + ˙ τ | ˙ g ∗

2 | ̇ g | ˙ μ	 ( ̇ ν) − 1 
4 | ̇ g | ˙ ν∗( ̇ μ∗ ˙ g ) ∗ ˙ g = ˙ μ ˙ u ̇ ν + ˙ τ

| ̇ μ ˙ u ∗ ˙ ν + ˙ τ | ˙ g 
2 | ̇ g | ˙ ν∗	 ( ̇ μ∗) − 1 

4 | ̇ g | ˙ μ( ̇ ν ˙ g ∗) ∗ ˙ g = ˙ μ ˙ u ∗ ˙ ν + ˙ τ

| ̇ μ ˙ u ̇ ν + ˙ τ | 2 ˙ g ∗ ˙ μ	 ( ̇ ν) − 1 
2 

˙ ν∗( ̇ μ∗ ˙ g ) ∗ ˙ g = ˙ μ ˙ u ̇ ν + ˙ τ

| ̇ μ ˙ u ∗ ˙ ν + ˙ τ | 2 ˙ g ̇ ν∗	 ( ̇ μ∗) − 1 
2 

˙ μ( ̇ ν ˙ g ∗) ∗ ˙ g = ˙ μ ˙ u ∗ ˙ ν + ˙ τ

N

T

u

A

w

T

w

f

(

U

t

t

u

w

t
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∑

w  

W
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a  
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w

ext, we elaborate on how to solve these subproblems respectively. 

he ˙ u -subproblem is written as 

˙ 
 

k +1 = arg min 

˙ u 

λ

2 

‖ ̇

 A ̇

 u − ˙ f ‖ 

2 
2 + 

β

2 

‖ ̇

 u − ˙ g k ‖ 

2 
2 + 〈 ̇ ηk , ˙ u − ˙ g k 〉 . (14) 

ccording to the theory of quaternion matrix derivatives [31] (here 

e list some required rules of quaternion matrix derivatives in 

able 1 ), then the optimality condition of (14) is given by 

λ

2 

( ̇ A ̇

 u − ˙ f ) ∗ ˙ A − λ

4 

( ̇ A 

∗( ̇ A ̇

 u − ˙ f )) ∗ + 

β

4 

(
˙ u − ˙ g k + 

˙ ηk 

β

)∗
= 0 , (15) 

here (·) ∗ denotes the conjugation operator. We can obtain the 

ollowing linear system 

λ ˙ A 

∗ ˙ A + β) ̇ u = λ ˙ A 

∗ ˙ f + β ˙ g k − ˙ ηk . (16) 

nder the quaternion periodic boundary condition for ˙ u , we know 

hat ˙ A 

∗ ˙ A , and 

˙ A 

∗ ˙ f are block circulant, so the quaternion fast Fourier 

ransform [30] can be used to find the solution of (16) 

˙ 
 

k +1 = F 

−1 
(
λF ( ̇ A ) ∗ ◦ F ( ˙ f ) + βF ( ̇ g ) − F ( ̇ η) 

λF ( ̇ A ) ∗ ◦ F ( ̇ A ) + β

)
, (17) 

here F denotes two-dimensional discrete quaternion Fourier 

ransform, F 

−1 represents two-dimensional discrete inverse 

uaternion Fourier transform, ◦ means component-wise multipli- 

ation, and the division is component-wise as well. 

The ˙ g -subproblem is equivalent to 

˙ 
 

k +1 = arg min 

˙ g 
‖ ̇

 g ‖ w, ∗ + 

β

2 

‖ ̇

 g −
(

˙ u 

k +1 + 

˙ ηk 

β

)
‖ 

2 
2 . (18) 

Before solving the ˙ g -subproblem, we first give the following 

heorems. 

heorem 3.1. For any ˙ B ∈ H 

m ×n (without loss of generality we as- 

ume that m ≥ n ) and a diagonal non-negative matrix E ∈ R 

m ×m , the

iagonal elements e i follows e 1 ≥ e 2 ≥ · · · e n ≥ 0 . Let ˙ B = 

˙ X 
 ˙ Y ∗, we 

ave 

n 
 

i =1 

e i t i = max 
˙ U ∗ ˙ U = ̇ I , ̇ V ∗ ˙ V = ̇ I 

tr (E ˙ U 

∗ ˙ B ̇

 V ) , (19) 

here t i and e i are the i th singular values of ˙ B and E, respectively.

hen ˙ U = 

˙ X and ˙ V = 

˙ Y , tr (E ˙ U 

∗ ˙ B ̇ V ) reaches its maximum value. 
4 
roof. Denote λi , i = 1 , 2 , · · · , n , are the singular values of E ˙ U 

∗ ˙ B ̇ V 

ith λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 . 

r (E ˙ U 

∗ ˙ B ̇

 V ) = 

n ∑ 

i =1 

λi ≤
n ∑ 

i =1 

e i t i , (20) 

or ˙ U = 

˙ X and 

˙ V = 

˙ Y , tr (E ˙ U 

∗ ˙ B ̇ V ) reaches its maximum value, i.e., 

q. (19) holds. �

heorem 3.2. For any ˙ p ∈ H 

m ×n , the QSVD of ˙ p is ˙ p = 

˙ U S ̇ V ∗, where 

 = 

(
diag (s 1 , s 2 , . . . , s n ) 

0 

)
. (21) 

ccording to (18) , ˙ p = ˙ u + 

˙ η
β

. The solution of ˙ g -subproblem is ˙ g = 

˙ 
 K 

˙ V ∗, where 

 = 

(
diag (k 1 , k 2 , . . . , k n ) 

0 

)
, (22) 

nd (k 1 , k 2 , . . . , k n ) is the solution of the following convex optimiza-

ion problem 

min 

 1 , ... ,k n 

n ∑ 

i =1 

( k i − s i ) 
2 + w i k i , s.t. k 1 ≥ k 2 ≥ · · · ≥ k n ≥ 0 . (23) 

roof. For any ˙ g ∈ H 

m ×n , according to Theorem 2.1 , we have ˙ g =
˙ 
 1 K 

˙ V ∗1 as the singular value decomposition of ˙ g and 

 = 

(
diag (k 1 , k 2 , . . . , k n ) 

0 

)
, (24) 

ith k 1 ≥ k 2 ≥ · · · ≥ k n ≥ 0 . From ˙ p = ˙ u + 

˙ η
β

, we know that 
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0  
min 

˙ g 
‖ ̇

 g ‖ w, ∗ + 

β

2 

‖ ̇

 g − ( ̇ u + 

˙ η

β
) ‖ 

2 
2 

 min 

˙ g 
‖ ̇

 g ‖ w, ∗ + 

β

2 

‖ ̇

 g − ˙ p ‖ 

2 
2 

 min 

˙ U 1 ,K, ̇ V 1 
k 1 ≥k 2 ≥···≥k n ≥0 

‖ 

˙ U 1 K 

˙ V 

∗
1 ‖ w, ∗ + ‖ 

˙ p − ˙ U 1 K 

˙ V 

∗
1 ‖ 

2 
2 

 min 

˙ U 1 ,K, ̇ V 1 
k 1 ≥k 2 ≥···≥k n ≥0 

‖ K ‖ w, ∗ + ‖ 

˙ p ‖ 

2 
2 −| tr ( ˙ p ∗ ˙ U 1 K 

˙ V 

∗
1 ) | −| tr ( ̇ V 1 K 

˙ U 

∗
1 ˙ p ) | + ‖ K ‖ 

2
2

 min 

˙ U 1 ,K, ̇ V 1 
k 1 ≥k 2 ≥···≥k n ≥0 

‖ K‖ w, ∗ − | tr (s ˙ U 

∗
1 

˙ U k ̇ V 

∗ ˙ V 1 ) | − | tr (K 

˙ U 

∗ ˙ U 1 S ̇ V 

∗
1 

˙ V ) | + ‖ K‖ 

2 
2 

 min 

K 
k 1 ≥k 2 ≥···≥k n ≥0 

‖ K‖ w, ∗ − max 
( ̇ U 1 

˙ U ) ∗ ( ̇ U 1 
˙ U )= ̇ I 

( ̇ V ̇ V 1 ) 
∗ ( ̇ V ̇ V 1 )= ̇ I 

(| tr (S( ˙ U 

∗
1 

˙ U ) K( ̇ V 

∗ ˙ V 1 )) | + | tr (K( ˙ U 

∗U̇

 min 

k 1 ≥k 2 ≥···≥k n ≥0 
‖ K‖ w, ∗ −

n ∑ 

i =1 

(
s i k i + k i s i 

)
+ ‖ k ‖ 

2 
2 

 min 

k 1 ≥k 2 ≥···≥k n ≥0 

n ∑ 

i =1 

w i k i − 2 k i s i + k 2 i 

 min 

k 1 ≥k 2 ≥···≥k n ≥0 

n ∑ 

i =1 

(k i − s i ) 
2 + w i k i . 

rom the above deduction, we can see that the solution of the ˙ g - 

ubproblem is 

˙ 
 = 

˙ U K 

˙ V 

∗. (26) 

�

Then the minimization problem (12) has a unique solution and 

an be solved by the ADMM method. We can compute the so- 

ution of the ˙ u subproblem according to Eq. (17) . The process of 

ur QWNNM algorithm is conclude in Algorithm 1 . It is worth to 

lgorithm 1 The proposed QWNNM algorithm. 

nput: 

Let ˙ u 0 = 

˙ f , ˙ g 0 = ˙ u 0 , ˙ η0 = 0 ; 

Set parameters λ, β and w i ; 

utput: 

The recovered image ˙ u k ; 

1: for k = 0 : kMax do 

2: Calculate u k +1 by Eq. (17); 

3: Calculate g k +1 by Eq. (26); 

4: Update ˙ ηk +1 = ˙ ηk + ( ̇ u k +1 − ˙ g k +1 ) ; 

5: k = k + 1 ; 

6: end for 

ention that the blurring matrix ˙ A and 

˙ A 

∗ in (17) are not easy 

o handle. We synthesize a degraded image by using the Matlab 

uilt-in blurring kernels and then generate the corresponding blur- 

ing matrix. In the real number domain, the blurring matrix A is a 

onochromatic matrix. Since a quaternion matrix consists of three 

maginary parts, how to generate a quaternion blurring matrix to 

olve ˙ u is a big challenge. By filling the three imaginary parts of 

he quaternion with the same blurring matrix A , we define the 

uaternion blurring matrix ˙ A as ˙ A = Ai + A j + Ak . We synthesize a

egraded image by using the Matlab built-in blurring kernels and 

hen generate the corresponding blurring matrix. For example, we 

se “H = fspecial(‘motion’,20,60)” to create 2-D linear motion filter 

n Matlab and use the “padPSF” function in Matlab to pad an array 

ith zeros to make it has the same dimension as the input image. 

ere the blur matrix is in real domain, however, we handle the 

olor image restoration task in quaternion. Therefore, we generate 
5 
(25) 

˙ 
 

∗
1 

˙ V )) | ) + ‖ K‖ 

2 
2 

 quaternion blur matrix in quaternion domain as 

˙ 
 = A r i + A g j + A b = 

⎛ 

⎜ ⎜ ⎝ 

˙ A 11 , ˙ A 12 , · · · , ˙ A 1 n 

˙ A 21 , ˙ A 22 , · · · , ˙ A 2 n , 

. . . 
˙ A m 1 , ˙ A m 2 , · · · , ˙ A mn , 

⎞ 

⎟ ⎟ ⎠ 

, (27) 

here A r = A g = A b = H and 

˙ A ij = A 

r 
ij 
i + A 

g 
ij 

j + A 

b 
ij 
k denotes a pixel of

˙ 
 , here i = 1 , 2 , . . . , m and j = 1 , 2 , . . . , n . The blur matrix ˙ A here is

 2-D quaternion matrix. After applying the fast quaternion Fourier 

ransform [30] , the quaternion blurring matrix ˙ A and 

˙ A 

∗ can be ex- 

ressed. In this fashion, all the elements in (17) can be computed 

n the quaternion domain and we can obtain the restoration re- 

ult. The flowchart of the proposed method is displayed in Fig. 2 . 

e first generate degradation images with blur and noise. Given 

he blurring kernel, we generate a blurring matrix corresponding 

o the original image. By applying the blurring kernel and adding 

oise to the original image, we synthesize a degraded color image. 

o solve the proposed model and better preserve the correlation 

f color channels, we transform the color image and the blurring 

atrix into the quaternion domain. By implementing the ADMM 

ethod and solving the ˙ u , ˙ g , and ˙ η subproblems, the recovery re- 

ult is obtained. 

Jia et al. [17] proposed a quaternion-based color image restora- 

ion model, which extended the classic TV model into the HSV 

olor space, named SV-TV. Here we give some discussions between 

T-TV and our QWNNM. Their SV-TV showed great success in color 

mage restoration tasks, such as Gaussian noise removal, Gaussian 

lur with Gaussian noise restoration. However, they did not di- 

ectly use the quaternion to represent the color image. Instead, 

hey convert the quaternion into the HSV color space with the 

quation 

 

 

 

c h (x, y ) = tan 

−1 
( | u (x,y ) −μv u (x,y ) v μ| 

| u (x,y ) −v u (x,y ) v | 
)
, 

c S (x, y ) = 

1 
2 
| u (x, y ) + μu (x, y ) μ| , 

c v (x, y ) = 

1 
2 
| u (x, y ) − μu (x, y ) μ| , 

(28) 

here u (x, y ) = u 0 (x, y ) + u 1 (x, y ) i + u 2 (x, y ) j + u 3 (x, y ) k is the

olor image, u t are the real and imaginary parts of u (x, y ) , t =
 , 1 , 2 , 3 . Here μ referring to the gray-value axis, ν is a unit
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Fig. 2. The flowchart of the proposed method. 
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nd pure quaternion number and ν is orthogonal to μ, and 

 h (x, y ) , c s (x, y ) , c v (x, y ) are the HSV components, respectively. The

ain difference between the proposed method and SV-TV is the 

egularizer. While [17] utilized the SV-TV regularizer, the proposed 

ethod is based on the low rank regularizer, i.e., the effective 

NNM regularizer. Due to the color information and structure, 

e extended the WNNM into the quaternion domain. Meanwhile, 

e studied the feasibility and the effectiveness of the proposed 

WNNM strategy. According to the strategy proposed in [17] , they 

id not easily transform the RGB color space into the HSV color 

pace, but creatively from Eq. (28) . Besides, they claimed that the 

-component does not contain a lot of image details like edges and 

eveloped a TV regularization in S and V channels in the HSV color 

pace. Such a creative scheme generates great success in handling 

olor images corrupted by the Gaussian blur and noise. Therefore, 

t is not fair to compare SV-TV with our work by directly trans- 

orming our QWNNM into HSV color space. Here, we leave this 

ork in the future. 

. Experiments 

To demonstrate the effectiveness of the proposed model, we 

ompare our method with several state-of-the-art methods for 

olor image restoration, including LRTV [37] , BM3D [40] , SV-TV 

17] , MSWNNM [38] , and the CNN-based method IRCNN [35] . 

e test with the images from Set27 1 and Set12 2 , which are 

hown in Figs. 3 and 4 , respectively. We test on three types 

f blur, “Gaussian”, “motion”, and “average”, for color image de- 

lurring. We use the Matlab command “fspecial(‘gaussian’,25,1.6)”, 

fspecial(‘motion’,20,60)”, and “fspecial(‘average’,9)” to generate the 

lurring kernels and add Gaussian white noise with Gaussian noise 

evel (standard variance) σ = 25 to all images. In Matlab code, the 

special (‘motion’, LEN,THETA) returns a filter to approximate, once 

onvolved with an image, the linear motion of a camera by LEN 

ixels, with an angle of THETA degrees in a counter-clockwise di- 
1 https://github.com/Huang- chao- yan/dataset . Image 1–7 and 16 are with the size 

f 500 × 500 ; Image 8 is with the size of 560 × 392 ; Image 9 and 22–25 are with 

he size of 481 × 321 ; Image 10 and 21 are with the size of 1024 × 683 ; Image 11 

s with the size of 1024 × 764 ; Image 12 is with the size of 321 × 481 ; Image 13 

s with the size of 1024 × 701 ; Image 14 is with the size of 1024 × 783 ; Image 15 

s with the size of 1024 × 684 ; Image 17 is with the size of 1024 × 605 ; Image 18 

s with the size of 448 × 296 ; Image 19 is with the size of 256 × 256 ; Image 20 

s with the size of 288 × 288 ; Image 26 is with the size of 418 × 378 ; Image 27 is 

ith the size of 1024 × 937 . 
2 The images of Set12 are mainly collected from Wang et al. [22] . Bird, Plane, 

aboon, Bee, Aquatic, Barbara, Boat, House, Peppers, and Starfish are with the size 

f 256 × 256 , Lena and Pelican are with the size of 512 × 512 . 

a

S

w

s

C

a

6 
ection. The filter becomes a vector for horizontal and vertical mo- 

ions. 

.1. Parameter setting 

The parameters of the proposed model are: λ = 60 , β = 7 . 5 for

aussian blur with noise; λ = 110 , β = 7 . 5 for motion blur with

oise; λ = 110 , β = 8 . 5 for average blur with noise. All compared

ethods are implemented with the available code and the default 

arameters mentioned in their corresponding paper. All the exper- 

ments are conducted under Windows10 and MATLAB R2019a run- 

ing on a desktop (Intel(R) Core(TM) i9-9900 CPU @3.60 GHz and 

6GB memory). IRCNN was proposed by Zhang et. al. [ 35 ] to tackle

mage restoration tasks, such as image denoising, deblurring, and 

uper-resolution. In this paper, we focus on the image restoration 

ask. Since IRCNN achieved very promising restoration results, we 

et the IRCNN method as one of our benchmarks. In this paper, 

he IRCNN network was implemented with MatConvNet toolbox 

nd an NVIDIA GeForce RTX 2080Ti. It is worth stating that we 

id not retrain the IRCNN 

3 . It is a coincidence that the test im- 

ges of our method are mostly the same as the test set of IRCNN. 

RCNN method performs well in Gaussian blur removal, however, 

ince the type of blur is not only a standard Gaussian distribution 

ut also motion and average distribution, the restored image will 

e undesirable. The termination criterion is defined as 

‖ ̇

 u 

i +1 − ˙ u 

i ‖ 

‖ ̇

 u 

i +1 ‖ 

< 10 

−4 , (29) 

here i is the number of iterations. After we get the result ˙ u , we

ransform it into the real space as u � and evaluate the quality. The 

eak signal to noise ratio (PSNR) and structural similarity (SSIM) 

41] are chosen as the quantitative measure. They are defined by 

SNR = 20 log 10 

255 

1 
mn 

‖ u 

� − u ‖ 2 

, (30) 

nd 

SIM ( u, u 

� ) = 

( 2 μu μu � + C 1 ) ( 2 σuu � + C 2 ) (
μ2 

u + μ2 
u � + C 1 

)(
σ 2 

u + σ 2 
u � + C 2 

) , (31) 

here u is the reference, μu , μ� 
u and σu , σ � 

u are the mean and the 

tandard deviation of u and u � , respectively. The positive constants 

 1 and C 2 are used to avoid a null denominator. 

In the experiments, we use the Matlab build-in function “psnr”

nd “ssim” to compute the PSNR and SSIM results. The higher the 
3 The code of IRCNN was downloaded from https://github.com/cszn/ircnn . 

https://github.com/Huang-chao-yan/dataset
https://github.com/cszn/ircnn
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Fig. 3. Images in Set27. 

Fig. 4. Images in Set12. 

Fig. 5. Parameter analysis of image ‘Plane’ under the motion blur and noise. 
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SNR and SSIM are, the better the quality of the restored image 

s, and the SSIM value is between 0 and 1. The weight w i = 

c 
σi + ε ,

here ε is a small number and c is a constant. We analyze the ef- 

ectiveness of different ε and c. From Fig. 5 , we can see the PSNR

nd SSIM curves of image ‘Plane’ with motion blur and noise along 

ith ε and c. Here, ε is a small constant, we set it with the Mat- 

ab built-in function ‘eps’ as ε ∈ [1 : 250 0 0 0] ∗ eps with step size
7 
0 0 0 0. The parameter c in WNNM [25] was set to be 
√ 

2 , here we

et c ∈ [0 . 1 : 5] ∗
√ 

2 with step size 0.2. As shown in Fig. 5 , the pa-

ameter ε is a small positive constant to avoid the denominator as 

ero. Hence, ε does not effectively affect the results, we set ε = eps 

or all our experiments. Meanwhile, c is a significant parameter in 

he weight w i . The choice of c is directly affecting the weight w i 
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Table 2 

PSNR (dB) and SSIM values of different restoration models for GB(25,1.6) /σ= 25. 

Methods Degraded LRTV BM3D SV-TV MSWNNM IRCNN QWNNM 

Set27 PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

1 18.30 0.2725 22.97 0.6122 22.37 0.5959 21.89 0.5790 23.55 0.6569 23.75 0.6732 25.33 0.7739 

2 19.28 0.2165 25.95 0.6471 25.78 0.6991 26.20 0.6949 26.93 0.7351 27.63 0.7465 27.87 0.7519 

3 18.25 0.2951 23.55 0.7286 22.84 0.7757 23.44 0.8001 24.69 0.8327 26.03 0.8535 26.53 0.8597 

4 19.52 0.1705 26.63 0.6569 26.79 0.7798 26.80 0.7709 27.86 0.8090 28.68 0.8172 28.79 0.8259 

5 19.91 0.1423 29.08 0.6796 30.86 0.8641 30.26 0.8441 31.77 0.8699 32.50 0.8643 32.73 0.8783 

6 18.97 0.2492 24.13 0.5984 23.57 0.5608 23.68 0.5614 24.64 0.6445 25.54 0.8121 26.26 0.8774 

7 19.32 0.2518 25.49 0.6559 24.98 0.6506 24.32 0.6222 26.23 0.7109 26.83 0.9106 27.37 0.9118 

8 18.24 0.2209 22.26 0.5897 22.03 0.6839 21.48 0.5740 23.17 0.7331 23.44 0.7376 23.68 0.7464 

9 19.75 0.1347 27.64 0.6026 28.78 0.7190 28.96 0.7239 28.70 0.7143 29.31 0.7191 29.51 0.9437 

10 17.59 0.2021 20.52 0.4138 19.86 0.3525 19.98 0.3688 22.58 0.9112 21.24 0.8826 21.68 0.8921 

11 18.01 0.2183 21.59 0.5463 20.90 0.5435 21.01 0.5499 23.55 0.8787 25.36 0.7741 25.44 0.8582 

12 18.06 0.2234 21.63 0.4538 21.49 0.4226 22.07 0.4751 21.92 0.4753 22.36 0.5195 22.65 0.6347 

13 19.07 0.2218 24.47 0.6185 23.60 0.6000 24.05 0.6156 24.38 0.8064 25.89 0.7368 25.99 0.8595 

14 18.73 0.2462 23.89 0.6685 22.82 0.6689 23.17 0.6814 23.59 0.7365 25.36 0.7741 25.48 0.8383 

15 19.72 0.1529 27.52 0.6517 27.81 0.7485 28.10 0.7540 28.35 0.9046 29.4 1 0.7878 29.87 0.9297 

16 19.69 0.2296 27.63 0.7119 27.31 0.7340 26.90 0.7130 28.51 0.7756 29.26 0.7929 29.98 0.8068 

17 18.92 0.1774 24.02 0.6098 23.69 0.6653 23.74 0.6570 25.69 0.8783 25.09 0.7167 25.64 0.8764 

18 17.17 0.2856 19.59 0.4317 19.35 0.3750 19.65 0.4388 19.81 0.4647 20.55 0.5596 20.63 0.5506 

19 17.80 0.3594 22.68 0.7382 22.71 0.7759 23.90 0.8106 23.92 0.8151 24.96 0.8385 25.13 0.8282 

20 19.57 0.2608 27.42 0.7415 27.79 0.8047 27.01 0.7528 28.69 0.8255 29.67 0.8390 30.35 0.8566 

21 20.04 0.1396 30.35 0.7351 32.27 0.8817 32.51 0.8720 31.92 0.9517 33.76 0.8844 34.29 0.9726 

22 20.01 0.1216 30.04 0.7123 33.49 0.9460 33.95 0.9282 34.16 0.9320 34.74 0.9103 34.94 0.9595 

23 19.06 0.2477 24.42 0.5953 23.92 0.5616 24.43 0.6055 24.76 0.6275 25.69 0.6830 25.98 0.8899 

24 19.79 0.1386 28.12 0.6109 29.19 0.6881 19.38 0.6945 29.30 0.6959 29.97 0.7689 30.27 0.9674 

25 19.31 0.1187 25.30 0.3814 25.98 0.3957 26.01 0.4061 25.99 0.4034 26.28 0.4372 26.46 0.7888 

26 17.23 0.1899 21.64 0.7592 20.38 0.8714 19.10 0.6785 19.70 0.9384 22.19 0.8326 22.92 0.9718 

27 19.85 0.5849 29.13 0.8129 29.46 0.9121 29.48 0.9045 29.04 0.8212 32.14 0.8897 32.32 0.9032 

Average 18.93 0.2249 25.10 0.6283 25.19 0.6769 24.87 0.6695 26.05 0.7611 26.95 0.7690 27.34 0.8501 

Set12 PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

Bird 18.74 0.3797 23.34 0.7079 23.45 0.7234 23.82 0.7411 23.82 0.6556 24.32 0.6784 24.63 0.7817 

Plane 18.99 0.3005 24.40 0.6892 24.82 0.8122 25.00 0.7907 25.36 0.7807 25.94 0.8013 26.18 0.8440 

Baboon 18.39 0.5197 22.37 0.7042 22.33 0.6944 22.21 0.7026 22.56 0.5210 22.80 0.5223 23.04 0.7321 

Bee 19.63 0.6109 28.02 0.8741 29.15 0.9167 27.64 0.8974 29.62 0.8371 29.52 0.8009 30.40 0.9275 

Aquatic 18.67 0.3442 23.87 0.7262 24.14 0.7796 24.36 0.7789 24.64 0.7759 25.22 0.7788 25.52 0.8287 

Barbara 18.56 0.5078 23.19 0.7862 23.37 0.7999 23.53 0.8072 23.83 0.6947 24.14 0.7134 24.35 0.8339 

Boat 18.28 0.4001 22.28 0.7287 22.53 0.7865 22.79 0.7820 23.08 0.6725 23.78 0.7022 23.61 0.8191 

House 19.31 0.6072 26.91 0.9084 27.54 0.9262 26.73 0.9142 28.83 0.7834 28.03 0.7770 28.49 0.9376 

Peppers 18.86 0.7863 24.30 0.9367 24.84 0.9450 24.12 0.9342 25.62 0.7698 25.57 0.7826 25.76 0.9539 

Starfish 18.85 0.7219 24.05 0.9199 24.14 0.9358 24.38 0.9347 24.64 0.7130 25.39 0.7419 25.76 0.9512 

Lena 19.66 0.7764 27.58 0.9560 27.90 0.9609 28.11 0.9616 28.82 0.7634 29.23 0.7719 29.57 0.9715 

Pelican 18.93 0.3630 24.53 0.7772 24.45 0.8208 25.00 0.8164 25.07 0.7291 25.58 0.7384 25.55 0.8345 

Average 18.91 0.5265 24.57 0.8096 24.89 0.8418 24.81 0.8384 25.49 0.7222 25.79 0.7339 26.07 0.8680 

Fig. 6. Zoom in part of color image restoration on Img21 with visual quality and numerical results (PSNR/SSIM). (a) original image, (b) degraded image with Gaussian kernel 

(25, 1.6) and Gaussian noise level σ = 25 , restored image reconstructed by: (c) LRTV [37] , (d) BM3D [40] , (e) SV-TV [17] , (f) MSWNNM [38] , (g) IRCNN [35] , (h) our QWNNM. 
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Table 3 

PSNR (dB) and SSIM values of different restoration models for MB(20,60) /σ= 25. 

Methods Degraded LRTV BM3D SV-TV MSWNNM IRCNN QWNNM 

Set27 PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

1 16.18 0.1493 20.42 0.5277 19.38 0.4720 19.59 0.4985 21.30 0.5798 21.22 0.7735 21.57 0.8469 

2 17.89 0.1315 23.85 0.5962 22.98 0.6076 23.86 0.6268 24.70 0.6729 24.74 0.6698 24.90 0.8358 

3 15.58 0.1585 19.94 0.6392 17.63 0.5784 19.27 0.6820 21.06 0.7364 21.57 0.7571 22.39 0.7803 

4 18.81 0.1163 25.44 0.6536 24.67 0.7153 25.33 0.7405 26.02 0.7737 26.41 0.8804 26.79 0.9612 

5 19.34 0.1119 27.85 0.6869 28.50 0.8389 28.14 0.8202 29.05 0.8427 29.48 0.9466 29.81 0.9731 

6 17.34 0.1454 21.84 0.4714 21.36 0.4703 21.56 0.4362 22.19 0.4996 22.61 0.7206 22.80 0.8548 

7 17.57 0.1493 22.40 0.5259 22.43 0.5448 21.52 0.4996 23.04 0.5777 22.91 0.7702 23.33 0.8481 

8 16.23 0.1146 19.66 0.4825 20.40 0.6196 19.30 0.4781 20.57 0.6229 20.46 0.8103 21.06 0.8102 

9 19.34 0.1048 26.85 0.5862 27.61 0.6926 27.45 0.6842 27.59 0.6878 27.84 0.8901 27.93 0.9228 

10 16.32 0.1168 19.23 0.3355 18.90 0.3208 18.90 0.3104 20.85 0.8871 19.62 0.7626 19.94 0.8554 

11 16.54 0.1289 20.07 0.4591 20.22 0.5464 19.51 0.4639 21.14 0.8378 20.51 0.7250 20.89 0.8236 

12 16.94 0.1308 20.48 0.3667 20.24 0.3544 20.83 0.3765 20.73 0.3718 21.08 0.4087 21.11 0.5486 

13 17.84 0.1375 22.56 0.5248 22.09 0.5407 22.14 0.5241 22.21 0.7580 23.31 0.7058 23.52 0.7891 

14 17.11 0.1483 21.38 0.5629 20.97 0.5839 20.71 0.5641 21.05 0.6610 22.08 0.7401 22.74 0.7350 

15 19.00 0.1120 25.90 0.6178 26.99 0.7395 15.93 0.7026 25.64 0.8755 26.92 0.8351 27.05 0.8864 

16 18.60 0.1422 25.03 0.6230 24.03 0.6223 24.49 0.6233 25.62 0.6811 25.63 0.7806 25.99 0.8057 

17 17.77 0.1189 22.45 0.5546 22.84 0.6643 22.08 0.5951 23.01 0.8148 22.97 0.7356 23.39 0.8221 

18 15.92 0.1582 18.40 0.3350 17.84 0.2358 18.46 0.3317 18.41 0.3298 18.85 0.7921 19.18 0.8255 

19 13.92 0.1373 17.72 0.5188 18.41 0.5962 18.81 0.6170 19.32 0.6297 19.77 0.7450 20.52 0.8597 

20 17.94 0.1530 23.61 0.6384 23.07 0.6251 23.63 0.6368 24.85 0.7207 25.20 0.8321 25.37 0.9157 

21 19.74 0.1217 29.74 0.7386 29.92 0.8607 30.66 0.8486 28.68 0.9164 32.06 0.8795 31.68 0.9488 

22 19.49 0.1051 29.26 0.7420 31.36 0.9309 31.44 0.9253 32.07 0.9383 31.60 0.9298 31.75 0.9255 

23 17.79 0.1437 22.19 0.4771 21.81 0.4529 22.23 0.4872 22.43 0.5015 22.71 0.7230 23.12 0.8102 

24 19.42 0.1115 27.53 0.5827 28.60 0.6719 28.27 0.6559 28.40 0.6626 28.66 0.7674 28.52 0.9511 

25 19.01 0.1013 25.02 0.3732 25.81 0.3899 25.35 0.3866 25.67 0.3891 25.67 0.5927 25.83 0.7751 

26 14.59 0.0977 18.61 0.6956 17.54 0.8003 17.34 0.6386 20.10 0.9139 19.66 0.8282 20.34 0.9562 

27 18.92 0.4576 27.16 0.8077 24.16 0.7765 25.95 0.8297 26.01 0.7669 28.90 0.8663 28.47 0.8353 

Average 17.60 0.1409 23.13 0.5601 22.95 0.6019 22.69 0.5920 23.77 0.6907 24.16 0.7729 24.44 0.8482 

Set12 PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

Bird 17.50 0.2792 21.66 0.6251 21.77 0.6395 22.09 0.6524 21.96 0.5428 22.45 0.5661 22.66 0.6922 

Plane 17.45 0.2226 22.09 0.6451 22.21 0.7264 22.57 0.7276 22.86 0.6942 23.16 0.7261 23.65 0.7735 

Baboon 17.38 0.4528 21.18 0.6560 21.23 0.6507 21.03 0.6532 21.52 0.4058 21.60 0.4226 21.59 0.6679 

Bee 18.38 0.5739 25.46 0.8507 25.23 0.8702 24.78 0.8573 26.68 0.7957 26.34 0.7604 26.96 0.8895 

Aquatic 16.45 0.2240 21.29 0.6223 21.19 0.6527 21.90 0.6773 22.09 0.6700 22.49 0.6739 22.71 0.7105 

Barbara 17.24 0.4345 21.54 0.7311 21.60 0.7403 21.86 0.7521 21.90 0.5887 22.34 0.6161 22.41 0.7715 

Boat 16.41 0.3030 20.12 0.6660 20.15 0.6970 20.76 0.7167 20.98 0.5748 21.46 0.6020 21.75 0.7525 

House 17.65 0.5213 24.10 0.8604 23.69 0.8590 24.12 0.8599 25.23 0.7219 25.01 0.7246 26.08 0.9026 

Peppers 17.18 0.7287 21.98 0.9022 22.18 0.9086 22.02 0.9009 23.18 0.6897 23.07 0.7060 23.07 0.9189 

Starfish 16.99 0.6766 21.19 0.8924 21.18 0.8997 21.73 0.9055 21.59 0.5950 22.15 0.6201 22.61 0.9195 

Lena 18.99 0.7586 26.41 0.9487 26.07 0.9504 26.55 0.9522 27.11 0.7301 27.56 0.7384 27.27 0.9584 

Pelican 17.65 0.3235 23.15 0.7607 22.39 0.7809 23.23 0.7902 23.74 0.7008 23.68 0.7016 24.10 0.8051 

Average 17.34 0.4582 22.51 0.7634 22.41 0.7813 22.72 0.7871 23.24 0.6425 23.44 0.6548 23.74 0.8135 

Fig. 7. Zoom in part of color image restoration on Img5 with visual quality and numerical results (PSNR/SSIM). (a) original image, (b) degraded image with Gaussian kernel 

(25, 1.6) and Gaussian noise level σ = 25 , restored image reconstructed by: (c) LRTV [37] , (d) BM3D [40] , (e) SV-TV [17] , (f) MSWNNM [38] , (g) IRCNN [35] , (h) our QWNNM. 
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Table 4 

PSNR (dB) and SSIM values of different restoration models for AB(9,9) /σ= 25. 

Methods Degraded LRTV BM3D SV-TV MSWNNM IRCNN QWNNM 

Set27 PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

1 16.93 0.1658 21.35 0.8304 20.55 0.8093 20.35 0.7013 22.07 0.5787 21.89 0.7768 22.33 0.8541 

2 18.45 0.1520 24.53 0.8099 24.08 0.8194 24.60 0.6425 25.32 0.6844 25.55 0.7829 25.65 0.8405 

3 16.43 0.1721 20.61 0.6334 19.75 0.6624 20.14 0.6746 21.34 0.7220 21.84 0.7430 23.06 0.7720 

4 18.96 0.1201 25.49 0.9446 25.35 0.9488 25.38 0.7767 26.04 0.7583 26.40 0.9659 26.55 0.9577 

5 19.58 0.1142 28.20 0.9584 28.88 0.9659 28.57 0.8215 29.89 0.8510 30.21 0.8543 30.18 0.9725 

6 17.92 0.1419 22.51 0.8409 22.09 0.8407 22.12 0.6537 22.75 0.5193 22.99 0.7307 23.25 0.8641 

7 18.37 0.1599 23.63 0.8445 23.25 0.8400 22.70 0.5289 24.12 0.6086 24.04 0.8030 24.31 0.8678 

8 16.96 0.1243 20.64 0.7381 20.33 0.7088 20.02 0.7010 21.29 0.6490 21.17 0.6361 21.79 0.7817 

9 19.53 0.1059 27.27 0.8842 28.08 0.9162 28.18 0.7001 28.19 0.7016 28.45 0.7034 28.21 0.9230 

10 16.61 0.1000 19.56 0.8374 19.13 0.8330 19.17 0.3137 19.17 0.8901 19.80 0.5607 20.08 0.8577 

11 17.04 0.1249 20.66 0.4999 20.06 0.7931 20.11 0.4938 21.00 0.8513 20.98 0.7492 21.33 0.8326 

12 17.22 0.1259 20.85 0.3835 20.71 0.5067 21.12 0.3866 21.05 0.3901 21.37 0.4137 21.49 0.5549 

13 18.26 0.1355 23.18 0.5554 22.57 0.7643 22.68 0.5374 22.81 0.7717 23.69 0.6126 23.85 0.7937 

14 17.69 0.1503 22.24 0.6028 21.36 0.6743 21.33 0.5775 21.62 0.6676 22.67 0.6579 23.31 0.7420 

15 19.35 0.1164 26.76 0.6623 26.82 0.8939 26.92 0.7250 26.83 0.8921 27.72 0.7590 27.72 0.8963 

16 18.99 0.1553 25.80 0.6496 25.40 0.7826 25.11 0.6354 26.31 0.6954 26.28 0.6961 26.72 0.8162 

17 18.26 0.1233 23.12 0.5928 22.78 0.8207 22.79 0.6199 23.57 0.8588 23.55 0.6611 23.75 0.8290 

18 16.01 0.1179 18.46 0.2889 18.30 0.7806 18.41 0.2763 18.43 0.2817 18.69 0.3142 18.89 0.8040 

19 15.87 0.2209 20.12 0.6336 19.81 0.8281 20.78 0.7027 20.91 0.7016 21.14 0.7115 22.21 0.8957 

20 18.68 0.1857 25.28 0.6773 25.32 0.9124 24.95 0.6754 26.13 0.7490 26.36 0.7570 26.46 0.9258 

21 19.89 0.1255 30.14 0.7743 31.21 0.9459 31.42 0.8594 30.09 0.9394 32.63 0.8889 32.29 0.9492 

22 19.82 0.1099 29.87 0.7886 31.64 0.9294 32.85 0.9354 32.83 0.9435 32.95 0.9411 32.84 0.9183 

23 18.14 0.1385 22.75 0.4896 22.42 0.7791 22.54 0.4785 22.80 0.5016 23.03 0.7100 23.34 0.8138 

24 19.57 0.1084 27.86 0.6174 28.59 0.9528 28.67 0.6648 28.83 0.6724 29.11 0.8766 29.00 0.9538 

25 19.08 0.0879 25.08 0.3669 25.60 0.7679 25.58 0.3853 25.80 0.3884 25.91 0.6883 25.91 0.7715 

26 15.23 0.1180 18.88 0.7715 18.18 0.9197 17.91 0.6713 19.21 0.9045 19.14 0.8409 20.35 0.9510 

27 19.44 0.5368 28.26 0.8149 27.94 0.8345 27.35 0.8700 26.01 0.7669 30.17 0.8814 29.98 0.8335 

Average 18.08 0.1495 23.82 0.6849 23.71 0.8234 23.77 0.6290 24.24 0.7014 24.73 0.7302 24.99 0.8508 

Set12 PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

Bird 17.90 0.2956 22.21 0.6460 22.25 0.6630 22.40 0.6656 22.34 0.6678 22.65 0.5665 22.77 0.6886 

Plane 17.99 0.2282 22.87 0.6562 23.01 0.7473 23.26 0.7429 23.39 0.7618 23.82 0.7376 24.15 0.7574 

Baboon 17.63 0.4520 21.52 0.6601 21.54 0.6609 21.32 0.6536 21.66 0.6661 21.82 0.4909 21.90 0.6728 

Bee 18.98 0.5857 26.60 0.8609 27.02 0.8916 26.12 0.8773 27.78 0.8916 27.50 0.7801 27.90 0.8936 

Aquatic 17.32 0.2475 22.09 0.6552 22.02 0.6891 22.39 0.6990 22.50 0.7140 23.0 1 0.6851 23.35 0.7341 

Barbara 17.57 0.4359 21.89 0.7345 21.94 0.7455 22.10 0.7505 22.34 0.7603 22.64 0.6195 22.85 0.7807 

Boat 17.13 0.3173 21.00 0.6840 20.96 0.7212 21.27 0.7254 21.35 0.7408 21.82 0.6082 22.17 0.7530 

House 18.48 0.5530 25.61 0.8849 25.28 0.8862 25.29 0.8842 26.89 0.9081 26.17 0.7438 27.64 0.9220 

Peppers 17.75 0.7414 22.64 0.9115 22.83 0.9168 22.35 0.9051 23.74 0.9293 23.57 0.7188 23.87 0.9317 

Starfish 17.74 0.6878 22.27 0.9010 22.21 0.9128 22.31 0.9106 22.66 0.9194 22.91 0.6235 23.27 0.9231 

Lena 19.15 0.7576 26.52 0.9477 26.39 0.9502 26.59 0.9502 27.29 0.9553 27.55 0.7285 27.51 0.9578 

pelican 18.31 0.3316 23.75 0.7796 23.45 0.7951 23.92 0.7979 24.10 0.8211 24.30 0.7036 24.38 0.7879 

Average 18.00 0.4695 23.25 0.7768 23.24 0.7983 23.28 0.7969 23.84 0.8113 23.98 0.6604 24.31 0.8169 

Fig. 8. Color image restoration on ‘Baboon’ with visual quality and numerical results (PSNR/SSIM). (a) original image, (b) degraded image with Gaussian kernel (25, 1.6) and 

Gaussian noise level σ = 25 , restored image reconstructed by: (c) LRTV [37] , (d) BM3D [40] , (e) SV-TV [17] , (f) MSWNNM [38] , (g) IRCNN [35] , (h) our QWNNM. 
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Fig. 9. Zoom in part of color image restoration on Img1 with visual quality and numerical results (PSNR/SSIM). (a) original image, (b) degraded image with motion ker- 

nel (20, 60) and Gaussian noise level σ = 25 , restored image reconstructed by: (c) LRTV [37] , (d) BM3D [40] , (e) SV-TV [17] , (f) MSWNNM [38] , (g) IRCNN [35] , (h) our 

QWNNM. 

Fig. 10. Zoom in part of color image restoration on Img17 with visual quality and numerical results (PSNR/SSIM). (a) original image, (b) degraded image with motion 

kernel (20, 60) and Gaussian noise level σ = 25 , restored image reconstructed by: (c) LRTV [37] , (d) BM3D [40] , (e) SV-TV [17] , (f) MSWNNM [38] , (g) IRCNN [35] , (h) our 

QWNNM. 
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nd the final result. Through trial and error, we set c = 1 . 7 ∗
√ 

2

or all our experiments. 

.2. Restoration results 

The PSNR and SSIM values of compared restoration methods 

ith Gaussian blur GB (25 , 1 . 6) /σ = 25 is shown in Table 2 , The

orresponding results with motion blur MB (20 , 60) /σ = 25 and 

ith average blur AB (9 , 9) /σ = 25 are shown in Tables 3 and 4 ,
11 
espectively. We highlight the best results in bold and underline 

he second-best results. From the numerical results, we see that 

he proposed method generates better restoration results with dif- 

erent types of blur. We also display the restoration images to 

emonstrate the visual quality of the proposed method. Figs. 6 , 

 and 8 are the restoration results of images degraded by Gaus- 

ian blur and noise. The color spots are still visible in the re- 

ults of LRTV [37] and MSWNNM [38] , which are the WNNM- 
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Fig. 11. Color image restoration on ‘Plane’ with visual quality and numerical results (PSNR/SSIM). (a) original image, (b) degraded image with motion kernel (20, 

60) and Gaussian noise level σ = 25 , restored image reconstructed by: (c) LRTV [37] , (d) BM3D [40] , (e) SV-TV [17] , (f) MSWNNM [38] , (g) IRCNN [35] , (h) our 

QWNNM. 

Fig. 12. Zoom in part of color image restoration on Img8 with visual quality and numerical results (PSNR/SSIM). (a) original image, (b) degraded image with average 

kernel (9, 9) and Gaussian noise level σ = 25 , restored image reconstructed by: (c) LRTV [37] , (d) BM3D [40] , (e) SV-TV [17] , (f) MSWNNM [38] , (g) IRCNN [35] , (h) our 

QWNNM. 
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ased method in the real number domain. The blur seems not to 

e removed fully in the restored images of BM3D [40] . The SV-TV 

17] is a quaternion-based method, which can generate good re- 

ults in low Gaussian noise level. However, with Gaussian noise 

evel σ = 25 , the restoration results seem not so good. We also 

ompared our method with the IRCNN [35] , which is a convolu- 

ional neural network method. From the visual results, we observe 

hat the proposed method can better preserve the color structure 

f the color channels. Figs. 9 , 10 , and 11 are the results of restora-

ion with motion blur and noise. In Fig. 9 , we see that the pro-
12 
osed method can better preserve the detailed information. For 

ig. 10 , the zoom-in part of the original image is a flower from 

he lower right corner to the upper left corner, and the degrada- 

ion we added is motion blur moving to the right. For Fig. 11 , even

he mount below the plane is in the same direction with the mo- 

ion blur, the restoration of our QWNNM still has the best result. It 

s not difficult to see from the degradation diagram that degrada- 

ion is quite severe. Compared with the results of other methods, 

nly our method can show the real shape of the image. Figs. 12 ,

3 , and 14 are the restoration results of average blur with noise. 
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Fig. 13. Zoom in part of color image restoration on Img16 with visual quality and numerical results (PSNR/SSIM). (a) original image, (b) degraded image with average kernel 

(9, 9) and Gaussian noise level σ = 25 , restored image reconstructed by: (c) LRTV [37] , (d) BM3D [40] , (e) SV-TV [17] , (f) MSWNNM [38] , (g) IRCNN [35] , (h) our QWNNM. 

Fig. 14. Color image restoration on ‘Aquatic’ with visual quality and numerical results (PSNR/SSIM). (a) original image, (b) degraded image with average kernel (9, 9) and 

Gaussian noise level σ = 25 , restored image reconstructed by: (c) LRTV [37] , (d) BM3D [40] , (e) SV-TV [17] , (f) MSWNNM [38] , (g) IRCNN [35] , (h) our QWNNM. 
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l

c

rom Fig. 12 , we observe that the detailed structures of our re- 

orted color images are better than the others. In the background 

f Fig. 13 , we can see that the color distribution is avoided by our

ethod. From Fig. 14 , we know that compared with other restora- 

ion methods, our QWNNM can better prevent the oversmoothing 

nd recover the detailed structure of the image. From all test im- 

ges, we see that the proposed method has the best performance 

n both visual quality and numerical results. 

To better demonstrate the advantages of the proposed method 

n color image restoration, we use the S-CIELAB error 4 to analyze 
4 http://scarlet.stanford.edu/brian/scielab/scielab.html . 

13 
he color quality of all compared methods in Fig. 15 . We set the S-

IELAB error from 0 to 80 to study the number of error pixels be- 

ween the original image and the restored image. The S-CIELAB er- 

or is used to evaluate the error between a pair of images that are 

resently coded as RGB data. We input the original image and the 

estored image as a pair and evaluate the S-CIELAB error from 0 to 

0. We plot the S-CIELAB error of all the test images with the three 

ifferent blur. The curves show that the proposed method has the 

east error pixels when the S-CIELAB error is zero and when the 

urves converge. 

http://scarlet.stanford.edu/brian/scielab/scielab.html
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Fig. 15. The S-CIELAB error of all compared methods on Set27. (a) the average S-CIELAB error of all degraded images with GB(25, 1.6)/ σ = 25 , (b) the average S-CIELAB error 

of all degraded images with MB(20, 60)/ σ = 25 , (c) the average S-CIELAB error of all degraded images with AB(9, 9)/ σ = 25 , (d) the average S-CIELAB error of all test images 

and all blur types. 
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. Conclusions 

In this paper, we proposed and analyzed a quaternion-based 

odel for color image restoration, which can overcome the disad- 

antages of existing real-valued WNNM-based methods. We repre- 

ented the color image with a pure quaternion matrix and applied 

he classical WNNM method in the quaternion domain. Hence, the 

orrelation of color channels can be well preserved. Due to the 

pecial multiplication and derivation rules of the quaternion, the 

athematical deduction of the weighted nuclear norm is differ- 

nt from the real-valued deduction. Therefore, we carefully de- 

igned a blurring operator in the quaternion domain and proved 

he uniqueness of the optimal solution. In three types of blur ker- 

els with noise, our QWNNM method generated better restora- 

ion results, which demonstrate the robustness of the proposed 

odel. Both visual and numerical results on two different datasets 

llustrated the robustness of the proposed scheme. Compared with 

oth the real-valued traditional and convolutional neural network 

ethods, our quaternion-based method can better preserve the 

olor structure and avoid color distribution. However, the proposed 

trategy has its limitations. We applied the classical ADMM solver 

o handle our QWNNM model, in fact, there is a more accurate 

olution for the proposed convex problem. Later on, we plan to 

esign a more advanced algorithm to improve the accuracy of the 

olution. 
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